dc.contributor.author |
Δικαίος, Χρήστος
|
el |
dc.contributor.author |
Dikaios, Christos
|
en |
dc.date.accessioned |
2024-06-04T10:01:07Z |
|
dc.date.available |
2024-06-04T10:01:07Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/59628 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.27324 |
|
dc.rights |
Default License |
|
dc.subject |
Νευρωνικά δίκτυα |
el |
dc.subject |
Τεχνητή Νοημοσύνη |
el |
dc.subject |
Αναγνώριση τρισδιάστατων αντικειμένων |
el |
dc.subject |
Artificial Intelligence |
en |
dc.subject |
3D Object Recognition |
en |
dc.subject |
Neural Networks |
en |
dc.subject |
You Only Look Once |
en |
dc.subject |
Deep Learning |
en |
dc.title |
Ανάπτυξη νευρωνικού δικτύου και αντίστοιχου λογισμικού εργαλείου για την αναγνώριση τρισδιάστατων αντικειμένων |
el |
dc.title |
Development of an artificial neural network and corresponding software tool for 3D object recognition |
en |
heal.type |
bachelorThesis |
|
heal.classification |
Τεχνητή Νοημοσύνη |
el |
heal.classification |
Artificial Intelligence |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2023-10-02 |
|
heal.abstract |
This diploma thesis aims to explore the potential of artificial intelligence and machine learning techniques, and more specifically the field of object recognition, in the maritime business. It focuses on the development of a robust and accurate system for identifying and localizing mechanical components in complex systems that can be found in a vessel, such as piping networks. The end-goal is to develop an object recognition software tool that will be user-friendly and easy to use, without the need for explicit programming and fine-tuning.
The thesis reviews the state-of-the-art object recognition algorithms and analyzes their function and evolution over time. The proposed approach is based on deep learning techniques, particularly convolutional neural networks, for 3D object recognition in 2D images.
Additionally, the thesis includes a method to automate the process of generating a large and accurate dataset required for training a custom object detection CNN-based network. The developed system has potential applications in various fields, including shipbuilding, manufacturing, and industrial automation, where accurate object recognition can facilitate maintenance, inspection, and retrofitting tasks. |
en |
heal.advisorName |
Γκίνης, Αλέξανδρος |
el |
heal.committeeMemberName |
Γκίνης, Αλέξανδρος |
el |
heal.committeeMemberName |
Παπαδόπουλος, Χρήστος |
el |
heal.committeeMemberName |
Βεντίκος, Νικόλαος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Μελέτης Πλοίου και Θαλάσσιων Μεταφορών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
46 σ. |
el |
heal.fullTextAvailability |
false |
|