HEAL DSpace

Ανάπτυξη νευρωνικού δικτύου και αντίστοιχου λογισμικού εργαλείου για την αναγνώριση τρισδιάστατων αντικειμένων

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Δικαίος, Χρήστος el
dc.contributor.author Dikaios, Christos en
dc.date.accessioned 2024-06-04T10:01:07Z
dc.date.available 2024-06-04T10:01:07Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59628
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27324
dc.rights Default License
dc.subject Νευρωνικά δίκτυα el
dc.subject Τεχνητή Νοημοσύνη el
dc.subject Αναγνώριση τρισδιάστατων αντικειμένων el
dc.subject Artificial Intelligence en
dc.subject 3D Object Recognition en
dc.subject Neural Networks en
dc.subject You Only Look Once en
dc.subject Deep Learning en
dc.title Ανάπτυξη νευρωνικού δικτύου και αντίστοιχου λογισμικού εργαλείου για την αναγνώριση τρισδιάστατων αντικειμένων el
dc.title Development of an artificial neural network and corresponding software tool for 3D object recognition en
heal.type bachelorThesis
heal.classification Τεχνητή Νοημοσύνη el
heal.classification Artificial Intelligence en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-10-02
heal.abstract This diploma thesis aims to explore the potential of artificial intelligence and machine learning techniques, and more specifically the field of object recognition, in the maritime business. It focuses on the development of a robust and accurate system for identifying and localizing mechanical components in complex systems that can be found in a vessel, such as piping networks. The end-goal is to develop an object recognition software tool that will be user-friendly and easy to use, without the need for explicit programming and fine-tuning. The thesis reviews the state-of-the-art object recognition algorithms and analyzes their function and evolution over time. The proposed approach is based on deep learning techniques, particularly convolutional neural networks, for 3D object recognition in 2D images. Additionally, the thesis includes a method to automate the process of generating a large and accurate dataset required for training a custom object detection CNN-based network. The developed system has potential applications in various fields, including shipbuilding, manufacturing, and industrial automation, where accurate object recognition can facilitate maintenance, inspection, and retrofitting tasks. en
heal.advisorName Γκίνης, Αλέξανδρος el
heal.committeeMemberName Γκίνης, Αλέξανδρος el
heal.committeeMemberName Παπαδόπουλος, Χρήστος el
heal.committeeMemberName Βεντίκος, Νικόλαος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Μελέτης Πλοίου και Θαλάσσιων Μεταφορών el
heal.academicPublisherID ntua
heal.numberOfPages 46 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής