dc.contributor.author | Μαντούβαλος, Χαράλαμπος | el |
dc.contributor.author | Mantouvalos, Charalampos | en |
dc.date.accessioned | 2024-06-17T11:31:09Z | |
dc.date.available | 2024-06-17T11:31:09Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/59736 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.27432 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Εφαρμοσμένες Μαθηματικές Επιστήμες” | el |
dc.rights | Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/gr/ | * |
dc.subject | Αντίστροφα προβλήματα | el |
dc.subject | Διαφορικές εξισώσεις | el |
dc.subject | Κυματική εξίσωση | el |
dc.subject | Συναρτήσεις Bessel | el |
dc.subject | Mathematica | en |
dc.subject | Εκτίμηση ευστάθειας | el |
dc.subject | Stability estimates | en |
dc.subject | Dirichlet-to-Neumann map | en |
dc.subject | Radon Transform | en |
dc.subject | Poincare-Linstedt method | en |
dc.title | Εκτιμήσεις λογαριθμικής ευστάθειας για ένα αντίστροφο πρόβλημα της κυματικής εξίσωσης και μελέτη του ακτινικά συμμετρικού προβλήματος | el |
dc.title | On Logarithmic stability estimate for an inverse wave problem and on the investigation of the radial symmetric problem | en |
heal.type | masterThesis | |
heal.classification | Μαθηματικά | el |
heal.classification | Mathematics | en |
heal.classification | Αντίστροφα προβλήματα | el |
heal.classification | Inverse problems | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2024-03-22 | |
heal.abstract | In chapter 1, we briefly discuss about inverse problems, the differences with direct problems and how one may approach an inverse problem in order to obtain a desired estimate. They arise in various real world problems and applications. In chapter 2, we consider the work of Bellassoued-Choulli-Yamamoto (2009) for finding a sta- bility estimate for an inverse problem of the wave equation and a multidimentional Borg-Levinson theorem from their analytical procedure to produce the log-type stability as it follows in theorems 14, 16 and 17. Their work is mostly based on the properties of the solution of the wave equa- tion and providing a stability estimate for hyperbolic equation for a relatively open subset of the boundary and using generalized X-ray and Fourier transformations. In chapter 3, we present a semi analytical-numerical procedure for verifying theorem 17 for the simplest case where we have the source of the wave equation depending only on the radius, hence we have radial symmetry, and our domain is the circle with radius 1.1. For the analytic part we solve a eigenvalue differential equation with radial symmetry considering the solutions arise from Bessel’s functions. We apply Poincare-Linstedt method to have the perturbed solution familiar with Bessel coefficients, hence we got a matrix with 2 arbitrary constants. For the numerical pro- cedure we used Wolfram Mathematica where we had to find in the graph at least 6 eigenvalues for the two sources q1 and q2. After finding the eigenvalues we could find the eigenfunctions and we applied the Sobolev norm to construct the terms that arise in theorem 17 and we concluded to the verification of the estimate. In chapter 4, we provide an appendix for the basic definitions that are not covered in the pre- vious chapters, and provide some calculations that arise in chapters 2 and 3. | en |
heal.advisorName | Χαραλαμπόπουλος, Αντώνιος | el |
heal.committeeMemberName | Καραφύλλης, Ιάσων | el |
heal.committeeMemberName | Γκιντίδης, Δρόσος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 74 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: