HEAL DSpace

Transfer learning exploiting demonstrations in a human-robot interactive game

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Σταύρου, Νικόλαος
dc.contributor.author Stavrou, Nikolaos en
dc.date.accessioned 2024-06-28T09:48:56Z
dc.date.available 2024-06-28T09:48:56Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59767
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27463
dc.rights Default License
dc.subject Human-Robot Collaboration en
dc.subject Machine Learning en
dc.subject Reinforcement learning en
dc.subject Transfer learning en
dc.subject Learning from demonstrations en
dc.title Transfer learning exploiting demonstrations in a human-robot interactive game en
heal.type bachelorThesis
heal.classification Robotics el
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-03-28
heal.abstract Enhancing Human-Robot Collaboration requires robots that are not only socially aware but also proficient in adapting and learning from interactions to perform interdependent tasks effectively. This thesis extends recent research by focusing on the dynamics of Human-Robot Collaboration where humans collaborate with a Deep Reinforcement Learning agent to achieve a common goal. The performance in such collaborations de pends on the Deep Reinforcement Learning agent’s ability to adapt and learn from its human partner and vice versa. Our study implements an alternative Transfer Learning (TL) approach, Learning from Demonstrations, specifically through Deep Q-Learning from Demonstrations (DQfD), aimed at encouraging more efficient human-robot teamwork. In contrast to the foundational work that utilized Probabilistic Policy Reuse, our approach, coupled with adjustments to the Soft Actor Critic algorithm’s settings, seeks to enhance adaptability and learning outcomes. We conducted experiments involving 24 participants to evaluate the impact of these changes. Our findings suggest that the direct transfer of expertise with Learning from Demonstrations, complemented by specific SAC algorithm settings can significantly influence the collaborative performance. el
heal.advisorName Τζαφέστας, Κωνσταντίνος el
heal.committeeMemberName Κορδώνης, Ιωάννης el
heal.committeeMemberName Ψυλλάκης, Χαράλαμπος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Σημάτων, Ελέγχου και Ρομποτικής el
heal.academicPublisherID ntua
heal.numberOfPages 122 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής