HEAL DSpace

Machine Learning for Forecasting: A Comparative Analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Παπαδάκης, Κωνσταντίνος el
dc.contributor.author Papadakis, Konstantinos en
dc.date.accessioned 2024-07-08T09:57:06Z
dc.date.available 2024-07-08T09:57:06Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59817
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27513
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc/3.0/gr/ *
dc.subject Timeseries Forecasting en
dc.subject Deep Learning en
dc.subject Machine Learning en
dc.subject Data Science en
dc.subject Comparative Analysis en
dc.subject Πρόβλεψη Χρονοσειρών el
dc.subject Βαθιά Μάθηση el
dc.subject Μηχανική Μάθηση el
dc.subject Επιστήμη Δεδομένων el
dc.title Machine Learning for Forecasting: A Comparative Analysis en
dc.contributor.department AILS el
heal.type masterThesis
heal.secondaryTitle Performance Assessment on Electricity Load and Traffic Datasets en
heal.classification Επιστήμη Δεδομένων el
heal.classification Data Science en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-03-14
heal.abstract This thesis investigates the performance of advanced machine learning models for time series forecasting. Prophet, N-BEATS, DeepAR, DeepVAR, and the Temporal Fusion Transformer are applied to the Electricity Load Diagrams and PEMS-SF datasets. Results are rigorously evaluated using appropriate forecasting metrics. The study highlights the strengths and weaknesses of each model in handling real-world data complexities, offering insights for choosing optimal forecasting methods based on data characteristics and problem domain. en
heal.advisorName Κόλλιας, Στέφανος el
heal.advisorName Kollias, Stephanos en
heal.committeeMemberName Στάμου, Γεώργιος el
heal.committeeMemberName Βουλόδημος, Αθανάσιος el
heal.committeeMemberName Stamou, Georgios en
heal.committeeMemberName Voulodimos, Athanasios en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 95 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα