HEAL DSpace

A heuristic for improving clustering in biomass supply chains

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Christou, Ioannis
dc.contributor.author Psathas, Fragkoulis
dc.contributor.author Rentizelas, Athanasios
dc.contributor.author Papadakis, Athanasios
dc.contributor.author Georgiou, Paraskevas
dc.contributor.author Anastasopoulos, Despina
dc.contributor.author Lappas, Pantelis
dc.date.accessioned 2024-07-18T07:51:52Z
dc.date.available 2024-07-18T07:51:52Z
dc.identifier.issn 2330-2674 el
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59936
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27632
dc.relation https://doi.org/10.3030/101006717 el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Clustering en
dc.subject Weighted MSSC en
dc.subject Supply Chain en
dc.subject Biomass en
dc.subject Heuristics en
dc.title A heuristic for improving clustering in biomass supply chains en
heal.type journalArticle
heal.classification Optimisation en
heal.language el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-07-17
heal.bibliographicCitation Christou, I. T., Psathas, F., Rentizelas, A., Papadakis, A., Georgiou, P. N., Anastasopoulos, D., & Lappas, P. (2024). A heuristic for improving clustering in biomass supply chains. International Journal of Systems Science: Operations & Logistics, 11(1). https://doi.org/10.1080/23302674.2024.2378859 en
heal.abstract Clustering is commonly used in various fields such as statistics, geospatial analysis, and machine learning. In supply chain modelling, clustering is applied when the number of potential origins and/or destinations exceeds the solvable problem size. Related methods allow the reduction of the models’ dimensionality, hence facilitating their solution in acceptable timeframes for business applications. The weighted minimum sum-of-square distances clustering problem (Weighted MSSC) is a typical problem encountered in many biomass supply chain management applications, where large numbers of fields exist. This task is usually approached with the weighted K-means heuristic algorithm. This study proposes a novel, more efficient algorithm for solving the occurring weighted sum-of-squared distances minimization problem in 2-dimensional Euclidean surface. The problem is formulated as a set-partitioning problem, and a column-generation inspired approach is applied, finding better solutions than the ones obtained from the weighted version of the K-means heuristic. Results from both benchmark datasets and a biomass supply chain case show that even for large values of K, the proposed approach consistently finds better solutions than the best solutions found by other heuristic algorithms. Ultimately, this study can contribute to more efficient clustering, which can lead to more realistic outcomes in supply chain optimization. en
heal.publisher Taylor & Francis en
heal.journalName International Journal of Systems Science: Operations & Logistics en
heal.journalType peer-reviewed
heal.fullTextAvailability false
dc.identifier.doi 10.1080/23302674.2024.2378859 el


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα