HEAL DSpace

Development and testing of a coupled biphasic numerical model of tumor growth

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Παπάς, Χριστόφορος Ορέστης el
dc.contributor.author Papas, Christoforos Orestis en
dc.date.accessioned 2024-07-24T11:11:33Z
dc.date.available 2024-07-24T11:11:33Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59956
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27652
dc.rights Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nd/3.0/gr/ *
dc.subject Computational Biomechanincs en
dc.subject Implicit Time Integration en
dc.subject Coupled System of PDE en
dc.subject Finite Element Method en
dc.subject Μοντέλα Καρκίνου el
dc.subject Tumor Modeling en
dc.subject Υπολογιστική Εμβιομηχανική el
dc.subject Μέθοδος Πεπερασμένων Στοιχείων el
dc.subject Συζευγμένο Σύστημα ΜΔΕ el
dc.subject Άρρητα Σχήματα Ολοκλήρωσης el
dc.title Development and testing of a coupled biphasic numerical model of tumor growth en
heal.type masterThesis
heal.classification Υπολογιστική Εμβιομηχανική el
heal.classification Computational Biomechanics en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-11-16
heal.abstract This thesis focuses on the computational solution and validation of a sophisticated numerical model for simulating the tumor microenvironment (TME), emphasizing the interactions among cancer cell proliferation, oxygen transport phenomena, and the mechanical behavior of both tumor and host tissues. The primary objective is to develop and validate a reliable tool for understanding tumor dynamics, providing insights that can inform the design of more effective patient-specific treatments. The mathematical model accounts for the biphasic nature of tumor tissues and their complex interactions with surrounding healthy tissues. The mechanical behavior is modeled using both linear and hyperelastic constitutive laws, while the transport phenomena are governed by coupled convection-diffusion-reaction partial differential equations for oxygen concentration and cancer cell population. These formulations include detailed representations of interstitial fluid flow, solid stress states, and the influence of tumor growth on tissue deformation. Spatial discretization is achieved using the Finite Element Method, while temporal discretization is performed with methods such as Newmark and Generalized-$\alpha$. Coupling of the linear systems is accomplished with an advanced iterative solver. The methods developed are implemented in msolve and benchmarked against COMSOL to ensure accuracy and reliability. The results highlight significant differences in mechanical responses and transport phenomena between tumor and host tissues, influenced by their inherent heterogeneity. Detailed simulations provide valuable information on growth patterns, stress distributions, and oxygenation levels within the Tumor Micro Environment (TME), contributing to a deeper understanding of the mechanisms driving cancer progression. Overall, this thesis underscores the crucial role of computational modeling in medical research and serves as a foundation for refining clinical research parameters for patient-specific treatments. Future integration with stochastic and AI tools, along with the utilization of MRI data and advanced HPC platforms, will further improve the accuracy and applicability of these simulations in personalized cancer therapy. el
heal.advisorName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Καβουσανάκης, Μιχάλης el
heal.committeeMemberName Χαριτίδης, Κώστας el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 65 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα