dc.contributor.author | Διαμαντά, Μαρία Άννα | el |
dc.contributor.author | Diamanta, Maria Anna | en |
dc.date.accessioned | 2024-07-30T07:00:30Z | |
dc.date.available | 2024-07-30T07:00:30Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/59971 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.27667 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Παράκτια διάβρωση | el |
dc.subject | Τεχνητά Νευρωνικά Δίκτυα | el |
dc.subject | Σχηματοποίηση Κυματικού Κλίματος | el |
dc.subject | Μεταφορά και εναπόθεση ιζήματος | el |
dc.subject | Κυματικοί Αντιπρόσωποι | el |
dc.subject | Wave climate schematization | en |
dc.subject | Coastal erosion | en |
dc.subject | Artificial Neural Networks. | en |
dc.subject | Sediment transport | en |
dc.subject | Representative waves | en |
dc.title | Προσδιορισμός κυματικών αντιπροσώπων για την πρόβλεψη τάσεων διάβρωσης και απόθεσης σε παράκτιες περιοχές μέσω μαθηματικής προσομοίωσης και Τεχνητών Νευρωνικών Δικτύων | el |
dc.title | Representative Waves for Estimating Annually Averaged Sedimentation and Erosion Trends in Sandy Coastal Areas using Numerical Models and Artificial Neural Networks | en |
heal.type | bachelorThesis | |
heal.classification | Coastal Engineering | en |
heal.classification | Numerical Modelling | en |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2023-03-14 | |
heal.abstract | Process based numerical models are widely recognised as a valuable tool for simulating and predicting changes in coastal bed morphology. However, despite their prevalent use in coastal research studies, they are highly intensive in computational resources and processing capacity, therefore requiring the employment of wave schematization methods in order to reduce the required wave input data and accelerate the simulation processes. This thesis introduces a new methodology of wave input reduction by combining the use of numerical modelling and Artificial Neural Networks (ANN), in order to derive a set of representative wave conditions that is morphologically equivalent to the full wave climate. The proposed approach utilises time series of offshore wave characteristics (height, period and direction) that can be obtained from open databases and bathymetric data for the coastal area. The representative sea states are calculated by a trained ANN and are then used as inputs in the simulations carried out by the numerical models in order to obtain predictions on the evolution of coastal bed morphology. | en |
heal.advisorName | Χονδρός, Μιχάλης | el |
heal.committeeMemberName | Χονδρός, Μιχάλης | el |
heal.committeeMemberName | Τσουκαλά, Βασιλική | el |
heal.committeeMemberName | Ευστρατιάδης, Ανδρέας | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών. Τομέας Υδατικών Πόρων και Περιβάλλοντος. Εργαστήριο Λιμενικών Έργων | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 129 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: