dc.contributor.author |
Βλαχάκης, Νίκος
|
el |
dc.contributor.author |
Vlachakis, Nikos
|
en |
dc.date.accessioned |
2024-07-30T09:02:11Z |
|
dc.date.available |
2024-07-30T09:02:11Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/59976 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.27672 |
|
dc.rights |
Default License |
|
dc.subject |
Federated Learning |
en |
dc.subject |
Resource Adaptive |
en |
dc.subject |
Distributed Computing |
en |
dc.subject |
Privacy Preservation |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Ομοσπονδιακή Μάθηση |
el |
dc.subject |
Διατήρηση Απορρήτου |
el |
dc.subject |
Μηχανική Μάθηση |
el |
dc.subject |
Κατανεμημένη Υπολογιστική |
el |
dc.subject |
Προσαρμογή στους Πόρους |
el |
dc.title |
HarmoniFL: Προσαρμοσμένο σε πόρους εργαλείο Federated Learning |
el |
dc.title |
HarmoniFL: Resource-Adaptive Federated Learning Tool |
en |
heal.type |
bachelorThesis |
|
heal.classification |
Artificial Intelligence and Machine Learning |
en |
heal.language |
el |
|
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2024-04-03 |
|
heal.abstract |
In the realm of Federated Learning (FL), the presumption of uniform processing capacity among participating clients overlooks the reality of diverse client hardware. This diversity introduces system
heterogeneity, leading to disparities in computational resources that ultimately compromise the efficient utilization of distributed data, thus hindering optimal learning outcomes. Addressing this challenge, this thesis introduces HarmoniFL, an open-source initiative engineered to navigate the complexities of resource heterogeneity within federated learning frameworks. By focusing on enhancing efficiency and inclusivity, HarmoniFL employs a dynamic client selection protocol that leverages real-time metrics such as CPU load, memory availability, and network bandwidth to optimize device participation in learning tasks. Adaptive strategies—ranging from data sampling
adjustments to epoch reduction and batch size optimization for high-demand devices—address the challenges posed by resource diversity. Our experimental analysis aims at two primary goals: minimizing training duration for less capable devices and improving the accuracy of the aggregated global model. Results demonstrate that HarmoniFL effectively reduces training times and enhances
model performance, underscoring its potential to foster more equitable device participation in federated learning tasks without sacrificing learning quality. The code repository can be found at
https://github.com/NikosVlachakis/harmoni-fl.git. |
en |
heal.advisorName |
Tsoumakos, Dimitrios |
en |
heal.committeeMemberName |
Garofalakis, Minos |
en |
heal.committeeMemberName |
Pneymatikatos, Dionysios |
en |
heal.committeeMemberName |
Tsoumakos, Dimitrios |
en |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
64 σ. |
el |
heal.fullTextAvailability |
false |
|