HEAL DSpace

HarmoniFL: Προσαρμοσμένο σε πόρους εργαλείο Federated Learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Βλαχάκης, Νίκος el
dc.contributor.author Vlachakis, Nikos en
dc.date.accessioned 2024-07-30T09:02:11Z
dc.date.available 2024-07-30T09:02:11Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/59976
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27672
dc.rights Default License
dc.subject Federated Learning en
dc.subject Resource Adaptive en
dc.subject Distributed Computing en
dc.subject Privacy Preservation en
dc.subject Machine Learning en
dc.subject Ομοσπονδιακή Μάθηση el
dc.subject Διατήρηση Απορρήτου el
dc.subject Μηχανική Μάθηση el
dc.subject Κατανεμημένη Υπολογιστική el
dc.subject Προσαρμογή στους Πόρους el
dc.title HarmoniFL: Προσαρμοσμένο σε πόρους εργαλείο Federated Learning el
dc.title HarmoniFL: Resource-Adaptive Federated Learning Tool en
heal.type bachelorThesis
heal.classification Artificial Intelligence and Machine Learning en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-04-03
heal.abstract In the realm of Federated Learning (FL), the presumption of uniform processing capacity among participating clients overlooks the reality of diverse client hardware. This diversity introduces system heterogeneity, leading to disparities in computational resources that ultimately compromise the efficient utilization of distributed data, thus hindering optimal learning outcomes. Addressing this challenge, this thesis introduces HarmoniFL, an open-source initiative engineered to navigate the complexities of resource heterogeneity within federated learning frameworks. By focusing on enhancing efficiency and inclusivity, HarmoniFL employs a dynamic client selection protocol that leverages real-time metrics such as CPU load, memory availability, and network bandwidth to optimize device participation in learning tasks. Adaptive strategies—ranging from data sampling adjustments to epoch reduction and batch size optimization for high-demand devices—address the challenges posed by resource diversity. Our experimental analysis aims at two primary goals: minimizing training duration for less capable devices and improving the accuracy of the aggregated global model. Results demonstrate that HarmoniFL effectively reduces training times and enhances model performance, underscoring its potential to foster more equitable device participation in federated learning tasks without sacrificing learning quality. The code repository can be found at https://github.com/NikosVlachakis/harmoni-fl.git. en
heal.advisorName Tsoumakos, Dimitrios en
heal.committeeMemberName Garofalakis, Minos en
heal.committeeMemberName Pneymatikatos, Dionysios en
heal.committeeMemberName Tsoumakos, Dimitrios en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 64 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής