dc.contributor.author | Αντωνιάδης, Αντόνιο | el |
dc.contributor.author | Antoniades, Antonio | en |
dc.date.accessioned | 2024-09-06T07:51:40Z | |
dc.date.available | 2024-09-06T07:51:40Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/60159 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.27855 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Υπερβραχυπρόθεσμη πρόβλεψη | el |
dc.subject | Φωτοβολταϊκή παραγωγή | el |
dc.subject | Επίγειες εικόνες ουρανού | el |
dc.subject | Random Forest | en |
dc.subject | Antlion Optimizer | en |
dc.subject | Ultra-short-term forecasting | en |
dc.subject | Photovoltaic production | en |
dc.subject | Ground-based sky images | en |
dc.subject | Δέντρα απόφασης | el |
dc.subject | Βελτιστοποίηση | el |
dc.title | Υπερβραχυπρόθεσμη πρόβλεψη φωτοβολταϊκής παραγωγής με χρήση δεδομένων εικόνων του ουρανού | el |
heal.type | bachelorThesis | |
heal.classification | Μηχανική μάθηση | el |
heal.classification | Ανανεώσιμες πηγές ενέργειας | el |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2024-06-21 | |
heal.abstract | Σκοπός της παρούσας διπλωματικής εργασίας είναι η υπερβραχυπρόθεσμη πρόβλεψη φωτοβολταϊκής παραγωγής, μέσω της ανάπτυξης ενός υβριδικού μοντέλου μηχανικής μάθησης. Το προτεινόμενο μοντέλο πρόβλεψης αποτελείται από την τεχνική μηχανικής μάθησης Random Forest και τον εξελικτικό αλγόριθμο Antlion Optimizer, με χρονικό ορίζοντα πρόβλεψης τα δεκαπέντε λεπτά. Η εκπαίδευση και η αξιολόγηση του υβριδικού μοντέλου πραγματοποιείται με δύο σύνολα δεδομένων: ένα με αποκλειστικά αριθμητικά δεδομένα και ένα που περιλαμβάνει αριθμητικά δεδομένα και εικόνες του ουρανού. Στόχος του αναπτυσσόμενου μοντέλου είναι η πρόσεγγιση της πραγματικά παραγόμενης φωτοβολταϊκής παραγωγής, με τη χρήση μετρούμενων μετερεωλογικών μεγεθών. Η απόδοση του προτεινόμενου υβριδικού μοντέλου συγκρίνεται με την απόδοση δύο άλλων μοντέλων μέσω υπολογισμού κατάλληλων μετρητικών σφάλματος. Η ανάπτυξη του κώδικα για τη δημιουργία των μοντέλων της παρούσας διπλωματικής εργασίας υλοποιήθηκε στη γλώσσα προγραμματισμού Python. Η καινοτομία της παρούσας διπλωματικής εργασίας εγκείται στην ενδελεχή αξιολόγηση των δεδομένων ανά καιρική συνθήκη, η οποία αποσαφηνίζει τα ποιοτικά χαρακτηριστηκά της διαδικασίας πρόβλεψης. Επιπλέον, το μοντέλο εκπαιδεύτηκε χρησιμοποιώντας επίγειες εικόνες του ουρανού, επιτρέποντας έτσι την ακριβή προσαρμογή του μοντέλου στις διαφορετικές συνθήκες νεφοκάλυψης. | el |
heal.abstract | The aim of this Diploma Τhesis is the ultra-short-term forecasting of photovoltaic production through the development of a hybrid machine learning model. The proposed forecasting model consists of the machine learning technique Random Forest and the evolutionary algorithm Antlion Optimizer, with a forecasting horizon of fifteen minutes. The training and evaluation of the hybrid model are conducted with two datasets: one with exclusively numerical data and another that includes numerical data and sky images. The aim of the developed model is to approach the actual produced photovoltaic output using measured meteorological parameters. The performance of the proposed hybrid model is compared with the performance of two other models by calculating appropriate error metrics. The code for creating the models in this Thesis was implemented in the Python programming language. The innovation of this Thesis lies in the thorough evaluation of the data under different weather conditions, which clarifies the qualitative characteristics of the forecasting process. Additionally, the model was trained using ground-based sky images, allowing for accurate adaptation of the model to different cloud cover conditions. | en |
heal.advisorName | Γεωργιλάκης, Παύλος | el |
heal.committeeMemberName | Παπαβασιλείου, Αντώνιος | el |
heal.committeeMemberName | Δημέας, Άρης-Ευάγγελος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικής Ισχύος | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 89 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: