dc.contributor.author | Τσιώτας-Νιαχοπέτρος, Ανδρέας | el |
dc.contributor.author | Tsiotas-Niachopetros, Andreas | en |
dc.date.accessioned | 2024-09-06T08:06:49Z | |
dc.date.available | 2024-09-06T08:06:49Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/60161 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.27857 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Genetic algorithms | en |
dc.subject | Parameter Estimation | en |
dc.subject | Structural Health Monitoring | en |
dc.subject | Probabilistic Inversion | en |
dc.subject | Maximum Likelihood Estimation | en |
dc.subject | Γενετικοί Αλγόριθμοι | el |
dc.subject | Εκτίμηση Παραμέτρων | el |
dc.subject | Πιθανολογική Αντιστροφή | el |
dc.subject | Παρακολούθηση δομικής ακεραιότητας κατασκευών | el |
dc.subject | Εκτίμηση Μέγιστης Πιθανοφάνειας | el |
dc.title | Maximum likelihood estimation of probabilistically described loads in beam structures | en |
heal.type | bachelorThesis | |
heal.classification | Probabilistic engineering | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2023-09-19 | |
heal.abstract | In recent years, the maritime market has shifted its focus on improving the reliability of marine structures. In naval engineering, structures frequently are submitted to loads of probabilistic nature and a concentrated effort has been invested into the creation of frameworks capable to identify the corresponding variability. A successful effort towards this direction could greatly contribute towards the field of predictive maintenance, so the current study could be placed in the wider field of Structural Health Monitoring (SHM). Unfortunately, this field contains a multitude of applications where the inferences regarding loading input’s aleatory variability cannot be made directly, since for the majority of real life systems the loading conditions are unknown and unobservable. To the above phenomenon an extra layer of difficulty is added if one considers the epistemic uncertainty governing the potential system, that further complicates the estimation of the unknown parameters. Researchers have to address the aforementioned issues by processing obtainable response measurements. In the current thesis measurements from a C-channel beam are examined both for an intact beam and one after the introduction of a circular discontinuity. The purpose is to identify the parameters [μ,σ] of four normal distributions governing the magnitudes and application points of two applied loads. The load identification process is performed by maximizing a marginalized version of the Likelihood function using Genetic Algorithms. | en |
heal.advisorName | Anyfantis, Konstantinos | en |
heal.committeeMemberName | Tsouvalis, Nicholas | en |
heal.committeeMemberName | Ventikos, Nikolaos | en |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Θαλάσσιων Κατασκευών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 95 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: