HEAL DSpace

Maximum likelihood estimation of probabilistically described loads in beam structures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Τσιώτας-Νιαχοπέτρος, Ανδρέας el
dc.contributor.author Tsiotas-Niachopetros, Andreas en
dc.date.accessioned 2024-09-06T08:06:49Z
dc.date.available 2024-09-06T08:06:49Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60161
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.27857
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Genetic algorithms en
dc.subject Parameter Estimation en
dc.subject Structural Health Monitoring en
dc.subject Probabilistic Inversion en
dc.subject Maximum Likelihood Estimation en
dc.subject Γενετικοί Αλγόριθμοι el
dc.subject Εκτίμηση Παραμέτρων el
dc.subject Πιθανολογική Αντιστροφή el
dc.subject Παρακολούθηση δομικής ακεραιότητας κατασκευών el
dc.subject Εκτίμηση Μέγιστης Πιθανοφάνειας el
dc.title Maximum likelihood estimation of probabilistically described loads in beam structures en
heal.type bachelorThesis
heal.classification Probabilistic engineering en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2023-09-19
heal.abstract In recent years, the maritime market has shifted its focus on improving the reliability of marine structures. In naval engineering, structures frequently are submitted to loads of probabilistic nature and a concentrated effort has been invested into the creation of frameworks capable to identify the corresponding variability. A successful effort towards this direction could greatly contribute towards the field of predictive maintenance, so the current study could be placed in the wider field of Structural Health Monitoring (SHM). Unfortunately, this field contains a multitude of applications where the inferences regarding loading input’s aleatory variability cannot be made directly, since for the majority of real life systems the loading conditions are unknown and unobservable. To the above phenomenon an extra layer of difficulty is added if one considers the epistemic uncertainty governing the potential system, that further complicates the estimation of the unknown parameters. Researchers have to address the aforementioned issues by processing obtainable response measurements. In the current thesis measurements from a C-channel beam are examined both for an intact beam and one after the introduction of a circular discontinuity. The purpose is to identify the parameters [μ,σ] of four normal distributions governing the magnitudes and application points of two applied loads. The load identification process is performed by maximizing a marginalized version of the Likelihood function using Genetic Algorithms. en
heal.advisorName Anyfantis, Konstantinos en
heal.committeeMemberName Tsouvalis, Nicholas en
heal.committeeMemberName Ventikos, Nikolaos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Θαλάσσιων Κατασκευών el
heal.academicPublisherID ntua
heal.numberOfPages 95 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα