HEAL DSpace

Δυναμικές ανάπτυξης δικτύων ομάδων

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Θεολογής, Νικόλαος el
dc.contributor.author Theologis, Nikolaos en
dc.date.accessioned 2024-11-08T12:36:52Z
dc.date.available 2024-11-08T12:36:52Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60403
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28099
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Επιστήμη Δεδομένων και Μηχανική Μάθηση" el
dc.rights Αναφορά Δημιουργού 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/gr/ *
dc.subject Affinity Bias en
dc.subject Informational Diversity en
dc.subject DeGroot Learning en
dc.subject Opinion Formation en
dc.subject Graph Theory en
dc.title Δυναμικές ανάπτυξης δικτύων ομάδων el
dc.title Network team growth dynamics en
heal.type masterThesis
heal.classification Team Formation en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-06-25
heal.abstract Previous research has convincingly demonstrated that in organizational settings, teams characterized by a diverse range of information and perspectives tend to outperform their homogeneous counterparts. Despite this evidence, why do we frequently observe predominantly homogeneous teams in practice? One prevailing explanation posits that the advantages of informational diversity are in tension with affinity bias. To delve deeper into the implications of this conflict on team composition, we study a sequential model of team formation. In this model, individuals prioritize their team's performance, as measured by its ability to accurately predict future outcomes based on various features, while also considering the potential costs associated with interacting with teammates who employ different approaches to the prediction task. Our work extends this initial team formation model by adding an underlying graph structure that changes how both the accuracy of the team and the disagreement between team members are calculated. We study two different graph structures. The first is a random undirected graph for which we have the freedom of changing and adjusting the edges in order to reach the optimal cost, while the second is a rigid hierarchical pyramid structure in which the edges are fixed in place, allowing us only the freedom to optimally position the agents within the pyramid. These extensions keep the tension between informational diversity and affinity bias, which we aim to optimize either by ensuring the optimal connections within the team or by strategically positioning the team members. en
heal.advisorName Fotakis, Dimitris en
heal.committeeMemberName Pagourtzis, Aris en
heal.committeeMemberName Terzi, Evimaria en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 74 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού 3.0 Ελλάδα