dc.contributor.author |
Kastoris, Charalampos
|
en |
dc.contributor.author |
Καστόρης, Χαράλαμπος
|
el |
dc.date.accessioned |
2025-01-08T12:24:39Z |
|
dc.date.available |
2025-01-08T12:24:39Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/60660 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.28356 |
|
dc.rights |
Default License |
|
dc.subject |
SAM |
en |
dc.subject |
Segmentation |
en |
dc.subject |
CLIPSeg |
en |
dc.title |
Zero-shot capabilities of advanced image segmentation models |
en |
heal.type |
bachelorThesis |
|
heal.secondaryTitle |
Pushing SAM and CLIP to their limits |
en |
heal.classification |
Machine learning |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2024-07-09 |
|
heal.abstract |
The object of this work is to study image segmentation across various reference
datasets, utilizing two state-of-the-art deep learning models, Segment Anything Model
(SAM) and CLIPSeg. The aim is to explore the performance of these models for the task of
image segmentation across multiple datasets, employing metrics such as Intersection over
Union (IoU) and Dice Loss. Image segmentation has become a critical task in computer
vision due to the exponential growth of image data volume and has numerous applica tions in various domains. Image segmentation involves dividing an image into multiple
segments, where each segment represents a different object or region within the image. |
en |
heal.advisorName |
Βουλοδήμος, Αθανάσιος |
el |
heal.committeeMemberName |
Στάμου, Γεώργιος |
el |
heal.committeeMemberName |
Σταφυλοπάτης, Ανδρέας |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
131 σ. |
el |
heal.fullTextAvailability |
false |
|