HEAL DSpace

Zero-shot capabilities of advanced image segmentation models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kastoris, Charalampos en
dc.contributor.author Καστόρης, Χαράλαμπος el
dc.date.accessioned 2025-01-08T12:24:39Z
dc.date.available 2025-01-08T12:24:39Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60660
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28356
dc.rights Default License
dc.subject SAM en
dc.subject Segmentation en
dc.subject CLIPSeg en
dc.title Zero-shot capabilities of advanced image segmentation models en
heal.type bachelorThesis
heal.secondaryTitle Pushing SAM and CLIP to their limits en
heal.classification Machine learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-07-09
heal.abstract The object of this work is to study image segmentation across various reference datasets, utilizing two state-of-the-art deep learning models, Segment Anything Model (SAM) and CLIPSeg. The aim is to explore the performance of these models for the task of image segmentation across multiple datasets, employing metrics such as Intersection over Union (IoU) and Dice Loss. Image segmentation has become a critical task in computer vision due to the exponential growth of image data volume and has numerous applica tions in various domains. Image segmentation involves dividing an image into multiple segments, where each segment represents a different object or region within the image. en
heal.advisorName Βουλοδήμος, Αθανάσιος el
heal.committeeMemberName Στάμου, Γεώργιος el
heal.committeeMemberName Σταφυλοπάτης, Ανδρέας el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 131 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής