HEAL DSpace

Application of physics-informed neural networks (PINNs) for reaction-diffusion PDEs modeling an avascular growing tumor

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κατσίφης, Ηλίας el
dc.contributor.author Katsifis, Ilias en
dc.date.accessioned 2025-01-08T13:30:42Z
dc.date.available 2025-01-08T13:30:42Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60667
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28363
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Υπολογιστική Μηχανική”
dc.rights Default License
dc.subject Machine Learning en
dc.subject PINNs en
dc.subject PDE en
dc.subject Tumor en
dc.subject Reaction-Diffusion en
dc.subject Μηχανική Μάθηση el
dc.subject Μερικές Διαφορικές Εξισώσεις el
dc.subject Όγκος el
dc.subject Αντίδραση-Διάχυση el
dc.subject Χωρίς Αγγείωση el
dc.title Application of physics-informed neural networks (PINNs) for reaction-diffusion PDEs modeling an avascular growing tumor en
heal.type masterThesis
heal.classification Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-06-28
heal.abstract This Master’s thesis explores the application of deep learning techniques for reaction-diffusion partial differential equations (PDEs) modeling an avascular growing tumor, specifically utilizing physics-informed neural networks (PINNs). PINNs are an innovative and effective approach for solving partial differential equations (PDEs) and conducting parameter inference. The study focuses on a diffusion-reaction model that simulates the interaction between a cancerous tumor and the nutrient oxygen. To enhance the convergence and effectiveness of the neural network, a novel method known as dynamic weights was employed. More specifically a weight was assigned in each term of the loss function which includes the PDEs, the initial conditions and the boundary conditions. This technique adjusts the weights of each term in the loss function to address potential gradient imbalances during training. Additionally, parameter inference was performed for diffusion coefficients, which vary between patients due to the personalized nature of these values. The results were highly satisfactory, indicating the potential for extending this approach to higher dimensions and more complex geometries, which are common challenges in numerical methods. en
heal.advisorName Kavousanakis, Mihalis en
heal.committeeMemberName Kokkoris, George en
heal.committeeMemberName Sarimveis, Haralambos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής