dc.contributor.author |
Κατσίφης, Ηλίας
|
el |
dc.contributor.author |
Katsifis, Ilias
|
en |
dc.date.accessioned |
2025-01-08T13:30:42Z |
|
dc.date.available |
2025-01-08T13:30:42Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/60667 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.28363 |
|
dc.description |
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Υπολογιστική Μηχανική” |
|
dc.rights |
Default License |
|
dc.subject |
Machine Learning |
en |
dc.subject |
PINNs |
en |
dc.subject |
PDE |
en |
dc.subject |
Tumor |
en |
dc.subject |
Reaction-Diffusion |
en |
dc.subject |
Μηχανική Μάθηση |
el |
dc.subject |
Μερικές Διαφορικές Εξισώσεις |
el |
dc.subject |
Όγκος |
el |
dc.subject |
Αντίδραση-Διάχυση |
el |
dc.subject |
Χωρίς Αγγείωση |
el |
dc.title |
Application of physics-informed neural networks (PINNs) for reaction-diffusion PDEs modeling an avascular growing tumor |
en |
heal.type |
masterThesis |
|
heal.classification |
Machine Learning |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2024-06-28 |
|
heal.abstract |
This Master’s thesis explores the application of deep learning techniques for reaction-diffusion partial differential equations (PDEs) modeling an avascular growing tumor, specifically utilizing physics-informed neural networks (PINNs). PINNs are an innovative and effective approach for solving partial differential equations (PDEs) and conducting parameter inference. The study focuses on a diffusion-reaction model that simulates the interaction between a cancerous tumor and the nutrient oxygen. To enhance the convergence and effectiveness of the neural network, a novel method known as dynamic weights was employed. More specifically a weight was assigned in each term of the loss function which includes the PDEs, the initial conditions and the boundary conditions. This technique adjusts the weights of each term in the loss function to address potential gradient imbalances during training. Additionally, parameter inference was performed for diffusion coefficients, which vary between patients due to the personalized nature of these values. The results were highly satisfactory, indicating the potential for extending this approach to higher dimensions and more complex geometries, which are common challenges in numerical methods. |
en |
heal.advisorName |
Kavousanakis, Mihalis |
en |
heal.committeeMemberName |
Kokkoris, George |
en |
heal.committeeMemberName |
Sarimveis, Haralambos |
en |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών |
el |
heal.academicPublisherID |
ntua |
|
heal.fullTextAvailability |
false |
|