HEAL DSpace

Fairness constraints and reward manipulation in stochastic multi-armed bandits

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κονταλέξη, Μαρίνα el
dc.contributor.author Kontalexi, Marina en
dc.date.accessioned 2025-01-13T12:13:45Z
dc.date.available 2025-01-13T12:13:45Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60718
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28414
dc.rights Default License
dc.subject Multi-armed bandits en
dc.subject Algorithmic fairness en
dc.subject Regret en
dc.subject Adversarial corruption en
dc.title Fairness constraints and reward manipulation in stochastic multi-armed bandits en
heal.type bachelorThesis
heal.classification Αλγόριθμοι el
heal.classification Online learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-06-12
heal.abstract This thesis studies the stochastic multi-armed problem, where a learner plays a sequential game with an environment for T rounds. In each round the learner chooses one of the K available arms to pull and receives a stochastically generated reward. The goal of the learner is to perform as the best policy in hindsight. Optimal algorithms can guarantee that the learner’s regret is bounded by O (\sqrt{KT}), which matches the lower bound obtained by information theory. Joseph et al. [1] imposed a fairness constraint on the learner’s actions, that restricts her from favoring an arm (i.e., pull it with higher probability) unless the arm is of greater merit. Our work proposes an ε-relaxation of their fairness definition and a fair algorithm that achieves O(\sqrt{1/ε}\sqrt{KT}) regret. Applications where fairness is sought after (like recommendation systems) are vulnerable to adversarial attacks (e.g., fake reviews) thus we present the behaviour of known algorithms in the mixed model and aspire to connect fair algorithms with robustness to adversarial corruption. en
heal.advisorName Φωτάκης, Δημήτρης el
heal.committeeMemberName Ποδηματά, Χαρά el
heal.committeeMemberName Παγουρτζής, Αριστείδης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 69 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής