HEAL DSpace

AI-enhanced multiscale finite element methods for forward and inverse uncertainty quantification problems in structural mechanics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Πυριαλάκος, Στέφανος Χρήστος
dc.contributor.author Pyrialakos, Stefanos Christos
dc.date.accessioned 2025-01-17T07:41:52Z
dc.date.available 2025-01-17T07:41:52Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60803
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28499
dc.rights Default License
dc.subject Computational Homogenization en
dc.subject Neural Networks en
dc.subject Bayesian Inference en
dc.subject Stochastic Optimization en
dc.subject CNT-reinforced Composites en
dc.subject Υπολογιστική Ομογενοποίηση el
dc.subject Νευρωνικά Δίκτυα el
dc.subject Μπεϋζιανή Επικαιροποίηση el
dc.subject Στοχαστική Βελτιστοποίηση el
dc.subject Σύνθετα ενισχυμένα με CNT el
dc.title AI-enhanced multiscale finite element methods for forward and inverse uncertainty quantification problems in structural mechanics en
heal.type doctoralThesis
heal.secondaryTitle Μέθοδοι πεπερασμένων στοιχείων σε πολλαπλές κλίμακες ενισχυμένες με ΑΙ για ευθέα και αντίστροφα προβλήματα ποσοτικοποίησης αβεβαιότητας στη δομική μηχανική el
heal.classification Multiscale Material Modeling en
heal.classification Uncertainty Quantification en
heal.classification Machine Learning en
heal.classification Μοντελοποίηση Πολλαπλών Κλιμάκων el
heal.classification Ποσοτικοποίηση Αβεβαιότητας el
heal.classification Μηχανική Μάθηση el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-06-01
heal.abstract Over recent decades, there has been growing interest in high-performance materials tailored for complex engineering applications. By modifying material structures at fine scales, exceptional properties such as enhanced mechanical strength, improved thermal conductivity, and novel optical features can be achieved. To address the time-consuming and costly experimentation on these materials, several computational techniques have been developed. Among them, the multiscale computational homogenization method via the well-established FE^2 algorithm has gained significant attention. Despite its computational intensity, this algorithm is favored for its ability to reliably predict the complex macroscopic behavior of multiscale material systems due to non-linear phenomena at finer scales. However, identifying the parameters that characterize material behavior at fine scales still remains a nontrivial undertaking. This thesis presents a cost-efficient framework using machine learning strategies for implementing the computational homogenization modeling approach on multi-query analyses investigating fine-scale parameters. Novel computational methodologies are proposed for accurate and efficient forward and inverse uncertainty quantification analyses on multiscale material systems and are validated through real-world case studies. First, this thesis presents a strategy for performing Bayesian inference on microscale material properties using experimental observations from the visible structure. To tackle the computational load of repeated FE^2 analyses, a feed-forward neural network (FFNN) is used to emulate material behavior affected by microstructural parameters. This is achieved by training the FFNN on a dataset from offline representative volume element (RVE) solutions. Next, the thesis generalizes the FE^2 algorithm by employing a sequence of FFNNs to represent different scales in the multiscale system, with each FFNN learning the constitutive law of its corresponding length scale. This results in a FFNN that emulates macroscopic behavior by incorporating mechanisms from each finer scale. Based on this scheme, the thesis, subsequently, proposes a methodology to identify optimal typologies of nanocomposite materials for desirable structural responses under uncertain conditions. Finally, a hierarchical Bayesian framework is introduced to utilize disjoint experimental measurements in multiscale material systems for joint parameter inference. This framework integrates experimental data from different scales and material compositions to yield informed parameters for future model predictions. en
heal.sponsor European Regional Development Fund and Greek national Funds under grant MATERIALIZE - an integrated cloud platform for the simulation and standardization of high performance materials and products en
heal.sponsor European High Performance Computing Joint Undertaking under grant DCoMEX - Data driven computational mechanics at exascale en
heal.advisorName Παπαδόπουλος, Βησσαρίων
heal.committeeMemberName Παπαδόπουλος, Βησσαρίων
heal.committeeMemberName Σπηλιόπουλος, Κωνσταντίνος
heal.committeeMemberName Λαγαρός, Νικόλαος
heal.committeeMemberName Ζέρης, Χρήστος
heal.committeeMemberName Χαριτίδης, Κωνσταντίνος
heal.committeeMemberName Φραγκιαδάκης, Μιχαήλ
heal.committeeMemberName Τριανταφύλλου, Σάββας
heal.academicPublisher Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής