HEAL DSpace

Reproducing kernel hilbert spaces with applications to support vector machines

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Κοντογιάννης, Φίλιππος el
dc.contributor.author Kontogiannis, Filippos en
dc.date.accessioned 2025-01-28T12:07:14Z
dc.date.available 2025-01-28T12:07:14Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/60995
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28691
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Εφαρμοσμένες Μαθηματικές Επιστήμες” el
dc.rights Default License
dc.subject Reproducing kernels en
dc.subject Support vector machines en
dc.subject Hilbert spaces en
dc.subject Representer theorem en
dc.subject Ridge regression en
dc.title Reproducing kernel hilbert spaces with applications to support vector machines en
dc.title Αναπαγωγικοί πυρήνες χώρων χίλμπερτ με εφαρμογές σε μηχανές διανυσμάτων υποστήριξης el
heal.type masterThesis
heal.classification Μαθηματικά el
heal.classification Machine learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-09-26
heal.abstract Support Vector Machines (SVM) are supervised learning models that deal with both classification and regression problems. For a k-classification problem, the main idea behind support vector machines models is constructing k − 1 hyperplanes, so as to split the data into data categories. In the context of regression models, SVM aims to find a function that fits the data in such a way that ”splits” the dependent variable into ”two cases.” One advantage of SVMs is the flexibility that the prediction formula provides, which arises naturally from kernel theory (kernel trick). Using the kernel trick and various types of kernels, we can avoid using the primal input space and construct feature spaces for each kernel that is more suitable for the studied problem by constructing non-linear models. Kernel-based methods heavily depend on the Theory of Reproducing Kernel Hilbert Space (RKHS), a powerful tool widely utilized across diverse scientific domains, particularly in scenarios where non-linear models are indispensable. The main result of RKHS theory is that a function belonging to an RKHS can be written as the span of an already chosen kernel function. Thus, given the variety of kernels, various function spaces can be generated to best fit the problem we are dealing with. Within the RKHS framework, it can be proven that, under specific assumptions on the kernel function, SVM problems admit a unique solution that belongs to the Reproducing Kernel Hilbert Space. en
heal.advisorName Γιαννακόπουλος, Αθανάσιος el
heal.committeeMemberName Γιαννακόπουλος, Αθανάσιος el
heal.committeeMemberName Γιαννακάκης, Νικόλαος el
heal.committeeMemberName Σμυρλής, Γεώργιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών el
heal.academicPublisherID ntua
heal.numberOfPages 72 σ. el
heal.fullTextAvailability false


Files in this item

This item appears in the following Collection(s)

Show simple item record