dc.contributor.author |
Κοντογιάννης, Φίλιππος
|
el |
dc.contributor.author |
Kontogiannis, Filippos
|
en |
dc.date.accessioned |
2025-01-28T12:07:14Z |
|
dc.date.available |
2025-01-28T12:07:14Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/60995 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.28691 |
|
dc.description |
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Εφαρμοσμένες Μαθηματικές Επιστήμες” |
el |
dc.rights |
Default License |
|
dc.subject |
Reproducing kernels |
en |
dc.subject |
Support vector machines |
en |
dc.subject |
Hilbert spaces |
en |
dc.subject |
Representer theorem |
en |
dc.subject |
Ridge regression |
en |
dc.title |
Reproducing kernel hilbert spaces with applications to support vector machines |
en |
dc.title |
Αναπαγωγικοί πυρήνες χώρων χίλμπερτ με εφαρμογές σε μηχανές διανυσμάτων υποστήριξης |
el |
heal.type |
masterThesis |
|
heal.classification |
Μαθηματικά |
el |
heal.classification |
Machine learning |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2024-09-26 |
|
heal.abstract |
Support Vector Machines (SVM) are supervised learning models that deal with both classification and regression problems. For a k-classification problem, the main idea behind support vector machines models is constructing k − 1 hyperplanes, so as to split the data into data categories. In the context of regression models, SVM aims to find a function that fits the data in such a way that
”splits” the dependent variable into ”two cases.” One advantage of SVMs is the flexibility that the prediction formula provides, which arises naturally from kernel theory (kernel trick). Using
the kernel trick and various types of kernels, we can avoid using the primal input space and construct feature spaces for each kernel that is more suitable for the studied problem by constructing non-linear models. Kernel-based methods heavily depend on the Theory of Reproducing Kernel
Hilbert Space (RKHS), a powerful tool widely utilized across diverse scientific domains, particularly in scenarios where non-linear models are indispensable. The main result of RKHS theory
is that a function belonging to an RKHS can be written as the span of an already chosen kernel function. Thus, given the variety of kernels, various function spaces can be generated to best fit the problem we are dealing with. Within the RKHS framework, it can be proven that, under specific assumptions on the kernel function, SVM problems admit a unique solution that belongs to the Reproducing Kernel Hilbert Space. |
en |
heal.advisorName |
Γιαννακόπουλος, Αθανάσιος |
el |
heal.committeeMemberName |
Γιαννακόπουλος, Αθανάσιος |
el |
heal.committeeMemberName |
Γιαννακάκης, Νικόλαος |
el |
heal.committeeMemberName |
Σμυρλής, Γεώργιος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
72 σ. |
el |
heal.fullTextAvailability |
false |
|