HEAL DSpace

Training-free style transfer in diffusion models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κακούρης, Δημήτριος el
dc.contributor.author Kakouris, Dimitrios en
dc.date.accessioned 2025-01-31T10:29:57Z
dc.date.available 2025-01-31T10:29:57Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/61017
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28713
dc.rights Default License
dc.subject Μηχανική Μάθηση el
dc.subject Νευρωνικά Δίκτυα el
dc.subject Μοντέλα διάχυσης el
dc.subject Μηχανισμός Προσοχής el
dc.subject Diffusion Models en
dc.subject Style Transfer en
dc.subject Generative AI en
dc.subject Τransformers en
dc.subject Μachine learning en
dc.title Training-free style transfer in diffusion models en
heal.type bachelorThesis el
heal.secondaryTitle Via Attention-Key Injection and Initial Noise Optimization en
heal.classification Computer science en
heal.language en el
heal.access free el
heal.recordProvider ntua el
heal.publicationDate 2024-09-12
heal.abstract Diffusion models are a novel class of generative models that have shown promising results in various applications, including image synthesis, natural language processing, and audio generation. Diffusion models operate by gradually transforming a sample from a simple distribution (e.g., Gaussian noise) into a complex data distribution through a series of iterative, noise-adding, and noise-removing steps. This diploma thesis extends the application of diffusion models to the domain of style transfer, a technique pivotal to altering the output of the diffusion model and effectively guiding into producing an image that closely resembles our desired art style. It is crucial to handle semantic alignment while also preserving the texture and nuances of the desired art style. This thesis aims to achieve a fine-balance between these two components. en
heal.abstract Diffusion models are a novel class of generative models that have shown promising results in various applications, including image synthesis, natural language processing, and audio generation. Diffusion models operate by gradually transforming a sample from a simple distribution (e.g., Gaussian noise) into a complex data distribution through a series of iterative, noise-adding, and noise-removing steps. This diploma thesis extends the application of diffusion models to the domain of style transfer, a technique pivotal to altering the output of the diffusion model and effectively guiding into producing an image that closely resembles our desired art style. It is crucial to handle semantic alignment while also preserving the texture and nuances of the desired art style. This thesis aims to achieve a fine-balance between these two components. en
heal.abstract Diffusion models are a novel class of generative models that have shown promising results in various applications, including image synthesis, natural language processing, and audio generation. Diffusion models operate by gradually transforming a sample from a simple distribution (e.g., Gaussian noise) into a complex data distribution through a series of iterative, noise-adding, and noise-removing steps. This diploma thesis extends the application of diffusion models to the domain of style transfer, a technique pivotal to altering the output of the diffusion model and effectively guiding into producing an image that closely resembles our desired art style. It is crucial to handle semantic alignment while also preserving the texture and nuances of the desired art style. This thesis aims to achieve a fine-balance between these two components. en
heal.advisorName Βουλόδημος, Αθανάσιος el
heal.committeeMemberName Στάμου, Γεώργιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua el
heal.numberOfPages 99 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής