HEAL DSpace

Υποκατάστατα μοντέλα βασισμένα στη μηχανική μάθηση για ποσοτικοποίηση αβεβαιοτήτων στην υπολογιστική ρευστοδυναμική

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bakis, Dionysios en
dc.contributor.author Μπάκης, Διονύσιος el
dc.date.accessioned 2025-02-14T11:08:50Z
dc.date.available 2025-02-14T11:08:50Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/61114
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.28810
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc/3.0/gr/ *
dc.subject Machine Learning en
dc.subject Optimization en
dc.subject Uncertainty Quantification en
dc.subject Computational Fluid Dynamics en
dc.subject Μηχανική Μάθηση el
dc.subject Βελτιστοποίηση el
dc.subject Ποσοτικοποίηση Αβεβαιότητας el
dc.subject Υπολογιστική Ρευστοδυναμική el
dc.title Υποκατάστατα μοντέλα βασισμένα στη μηχανική μάθηση για ποσοτικοποίηση αβεβαιοτήτων στην υπολογιστική ρευστοδυναμική el
dc.title Machine learning-based surrogate models for uncertainty quantification in CFD en
heal.type bachelorThesis
heal.classification Machine Learning en
heal.classification Optimization en
heal.classification Uncertainty Quantification en
heal.classification Computational Fluid Dynamics en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-09-20
heal.abstract This Diploma Thesis is in the area of Aerodynamic Shape Optimization under Un certainties, and, in particular, it explores the adequacy of Feedforward Fully Con nected Deep Neural Networks as surrogates of the high-fidelity, yet very expensive, Computational Fluid Dynamics solver for the task of quantifying the effects of un certainty (Uncertainty Quantification, UQ). This is the key process in search for a well performing design that is less sensitive to the presence of uncertainties (Robust Design), instead of just the best-performing design point. Uncertainties must be taken into account whenever optimization is carried out. For example, in Mechanical Engineering, minor fluctuations in model parameters can yield sub-optimal performances. In conjunction with the evolution of computing systems, the use of methods that take uncertainties into account increases the reli ability of the outcome of an optimization process. In most cases, UQ requires the computation of a stochastic model’s mean and vari ance. Here, UQ is carried out using Monte Carlo and Polynomial Chaos Expansion coupled with the fluid solver or a surrogate model for two aerodynamic problems involving transitional flows: an isolated airfoil and an isolated wing. The flows are simulated with the in-house PUMA software of the Parallel CFD & Optimiza tion Unit solving the Reynolds-Averaged Navier-Stokes equations along with the Spalart-Allmaras turbulence model, and the γ − Re˜ θ transition model. Cases with uncertainties related to coefficients that appear in the γ − Re˜ θ transition model are studied. The UQ methods, in general, require repetitive calls to the analysis code, which renders them prohibitively expensive, especially, whenever CFD software is involved. For this reason, the development of surrogate models aims to accelerate the optimization process by greatly reducing the computational cost. On the other side, surrogate models perform computations of lower fidelity than those obtained from the expensive CFD tool. This trade-off is being investigated in the two aerodynamic problems. The DNNs’ hyperparameters are tuned manually and also, by using evolutionary algorithms. Lastly, the involvement of two very promising techniques (Stacking Ensemble and Feature Selection) is examined, aiming to check how the prediction accuracy can further be improved as well as how surrogate models with fewer input features perform compared to those used so far. el
heal.advisorName Giannakoglou, Kyriakos en
heal.committeeMemberName Aretakis, Nikolaos en
heal.committeeMemberName Mathioudakis, Konstantinos en
heal.committeeMemberName Giannakoglou, Kyriakos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Ρευστών. Εργαστήριο Θερμικών Στροβιλομηχανών el
heal.academicPublisherID ntua
heal.numberOfPages 112 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα