HEAL DSpace

Graph neural networks for optimal and efficient generation of textual counterfactuals

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lymperopoulos, Dimitris en
dc.contributor.author Λυμπερόπουλος, Δημήτρης el
dc.date.accessioned 2025-03-28T09:22:09Z
dc.date.available 2025-03-28T09:22:09Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/61523
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.29219
dc.rights Default License
dc.subject Νευρωνικά Δίκτυα Γράφων el
dc.subject Εξηγήσεις με αντιπαράδειγμα el
dc.subject Διγράφοι el
dc.subject Ορθογώνιο Πρόβλημα Γραμμικής Ανάθεσης el
dc.subject Τεχνητή νοημοσύνη el
dc.subject Graph neural networks en
dc.subject Counterfactual Explanations en
dc.subject Bipartite graphs en
dc.subject Rectangular Linear Assignment Problem en
dc.subject Artificial Intelligence en
dc.title Graph neural networks for optimal and efficient generation of textual counterfactuals en
heal.type bachelorThesis
heal.classification Counterfactual Explanations en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-10-24
heal.abstract Counterfactual explanations provide reasoning in the form of changes needed to be made in order for a model to make a different decision. When the model in question is a black-box classifier and the input consists of textual data, many counterfactual editors attempt to gain insights about the inner workings of the model by slightly altering the original instances. However most of them are computationally expensive due to the massive space of alternatives one has to search when altering a text. In this thesis, we propose using the recently thriving deep learning models which specifically operate on graph structured data, called Graph Neural Networks (GNN). We present an editor that generates semantically edited inputs, known as counterfactual interventions, which change the model prediction, thus providing a form of counterfactual explanations for the model. The editor utilizes a special graph type knows as a bipartite graph (or bigraph) along with a GNN that we developed so that it simulates the solution to the Rectangular Linear Assignment Problem (RLAP). During our experiments, we showcase the editor’s flexible nature, and discuss multiple trade-offs regarding explainability, minimality and speed. We test our editor on two NLP tasks - binary sentiment classification and topic classification - and show that the generated edits are contrastive, fluent and minimal, while the whole process remains significantly faster than other state-of-the-art counterfactual editors. en
heal.advisorName Stamou, Giorgos en
heal.committeeMemberName Stamou, Giorgos en
heal.committeeMemberName Voulodimos, Athanasios en
heal.committeeMemberName Kollias, Stefanos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 102 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής