HEAL DSpace

Approximating almost-sparse Instances of the Fair Densest Subgraph in sub-exponential Time

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dorkofikis, Ioannis en
dc.contributor.author Δορκοφίκης, Ιωάννης el
dc.date.accessioned 2025-04-04T07:13:00Z
dc.date.available 2025-04-04T07:13:00Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/61616
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.29312
dc.rights Αναφορά Δημιουργού 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/gr/ *
dc.subject Approximation en
dc.subject Exhaustive sampling en
dc.subject Randomized rounding en
dc.subject Linear programming en
dc.subject Fairness en
dc.subject Προσέγγιση el
dc.subject Εξαντλητική δειγματοληψία el
dc.subject Randomized rounding en
dc.subject Γραμμικός προγραμματισμός el
dc.subject Δικαιοσύνη el
dc.subject Υποεκθετικός χρόνος el
dc.subject Sub-exponential time en
dc.title Approximating almost-sparse Instances of the Fair Densest Subgraph in sub-exponential Time en
heal.type bachelorThesis
heal.classification Algorithms and Complexity en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-10-29
heal.abstract This thesis studies the approach introduced in (Arora, Karger, Karpinski, JCSS 99) to approximate dense instances of many important NP-hard problems, including max- imum cut, maximum k-satisfiability and densest k-subgraph, and presents some of its extensions. By dense instances we mean those where the number of constraints (edges) is large relative to the number variables (vertices). The technique is based on the idea of exhaustive sampling: Select a small subset of vertices at random, “guess” their placement in the optimal solution by trying every possible placement and using this information determine where the rest of the vertices should be placed. By applying linear programming techniques in addition to randomized rounding, they develop a PTAS for approximating integer programs where the objective function and the constraints are “dense”, smooth, constant-degree polynomials. The framework is extended in (Fotakis, Lampis, Paschos, STACS 2016), where they use sub-exponential time to provide an (1−ε)-approximation for such polynomial integer programs while relaxing the denseness requirement. They show that increasing the size of the random sample and therefore the running time of the algorithm allows it to handle instances that are a lot less dense, while maintaining an approximation guarantee of (1 − ε). In this work, we show that this extension can be applied to give a sub-exponential (1 − ε)-approximation algorithm for “almost sparse” instances of the fair densest subgraph problem, where we have additional fairness constraints, thus demonstrating the flexibility of this technique. en
heal.advisorName Fotakis, Dimitris en
heal.committeeMemberName Φωτάκης, Δημήτριος el
heal.committeeMemberName Αχλιόπτας, Δημήτριος el
heal.committeeMemberName Παγουρτζής, Αριστείδης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 66 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού 3.0 Ελλάδα