HEAL DSpace

Development of attention-based LSTM models for the prediction of nocturnal hypoglycemia in patients with Type 1 Diabetes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tziavaras, Konstantinos en
dc.contributor.author Τζιβάρας Κωνσταντίνος el
dc.date.accessioned 2025-04-09T09:11:22Z
dc.date.available 2025-04-09T09:11:22Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/61659
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.29355
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Μεταφραστική Βιοιατρική Μηχανικής και Επιστήμης" el
dc.rights Default License
dc.subject Μηχανική Μάθηση el
dc.subject Νυχτερινή Υπογλυκαιμία el
dc.subject Βαθιά Μάθηση el
dc.subject Μοντέλο Πρόβλεψης Κινδύνου el
dc.subject Σακχαρώδης Διαβήτης Τύπου 1 el
dc.subject Machine Learning en
dc.subject Nocturnal Hypoglycemia en
dc.subject Deep Learning en
dc.subject Risk Prediction Model en
dc.subject Type 1 Diabetes en
dc.title Development of attention-based LSTM models for the prediction of nocturnal hypoglycemia in patients with Type 1 Diabetes en
heal.type masterThesis
heal.classification Biomedical Engineering en
heal.classification Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-10-14
heal.abstract Diabetes Mellitus (DM) is a chronic condition with a rising global prevalence and severe complications. The International Diabetes Federation projects that the number of individuals with diabetes will reach 643 million by 2030. To enhance glycemic control and mitigate the risk of serious physical and emotional complications related to hypoglycemia, this thesis presents the design, development, and evaluation of an interpretable model for predicting the risk of nocturnal hypoglycemic episodes in individuals with Type 1 Diabetes (T1DM). The proposed model employs a hybrid approach, integrating compartmental models with machine learning techniques. The OhioT1DM dataset, which includes real data from the eight-week monitoring period of 12 patients, was utilized for both development and evaluation purposes. Input data for the model consisted of glucose measurements, insulin doses, and meal information from the previous 24 hours. Mathematical models for simulating (i) the physiological mechanisms of insulin absorption from the subcutaneous tissue into the bloodstream, (ii) the activation of the insulin signaling pathway, and (iii) the absorption of glucose from the intestine were combined with Long Short-Term Memory Neural Networks (LSTMs). A custom attention layer was integrated to enhance the model’s performance and provide insights into the model’s reasoning behind its predictions. The model was assessed in terms of its ability to correctly predict nocturnal hypoglycemic events within a twelve-hour prediction window. Moreover, the Monte Carlo Dropout method was applied to quantify the uncertainty of the model's predictions. The model was also evaluated on an external dataset from the ten-day monitoring period of 12 T1DM patients, which was granted from the Diabetes Center, First Department of Pediatrics, P. & A. Kyriakou Children’s Hospital, Athens, within the framework of the SMARTDIAB project. en
heal.advisorName Nikita, Konstantina en
heal.committeeMemberName Nikita, Konstantina en
heal.committeeMemberName Stamou, Giorgos en
heal.committeeMemberName Voulodimos, Athanasios en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Συστημάτων Μετάδοσης Πληροφορίας και Τεχνολογίας Υλικών. Εργαστήριο Βιοϊατρικών Προσομοιώσεων και Απεικονιστικής Τεχνολογίας el
heal.academicPublisherID ntua
heal.numberOfPages 97 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής