dc.contributor.author | Ζορπαλά, Κοντεσσα - Ιωάννα![]() |
el |
dc.contributor.author | Zorpala, Kontessa Ioanna![]() |
en |
dc.date.accessioned | 2025-04-28T08:05:06Z | |
dc.date.available | 2025-04-28T08:05:06Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/61783 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.29479 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Μεταφραστική Βιοϊατρική Μηχανικής και Επιστήμης" | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Whole Brain Emulation | en |
dc.subject | Measurement Error | en |
dc.subject | Neural Simulation | en |
dc.subject | Connectome | en |
dc.subject | Προσομοίωση εγκεφάλου | el |
dc.subject | Σφάλμα μέτρησης | el |
dc.subject | Συνδεσιμότητα νευρώνων | el |
dc.subject | Νευρωνική προσομοίωση | el |
dc.subject | Plasticity | en |
dc.subject | Νευρωνική πλαστικότητα | el |
dc.title | Μοντελοποίηση της ανθρώπινης εγκεφαλικής δραστηριότητας μακράς διάρκειας: Είναι τα μοντέλα έγκυρα, δεδομένων των σφαλμάτων μέτρησης | el |
dc.title | Modelling long-term human brain activity: Are models still valid, given errors in measurement? | en |
heal.type | masterThesis | |
heal.classification | Νευροεπιστήμες | el |
heal.classification | Neuroscience | en |
heal.classification | Βιοϊατρική Μηχανική | el |
heal.classification | Biomedical Engineering | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2024-10-14 | |
heal.abstract | Whole Brain Emulation (WBE) represents one of the most ambitious objectives in the contemprorary computational neu roscience, aimingtoreplicate humanbrainactivitywithinacom putational model. This study investigates the role of measure ment errors during the data acquisition phase and their subse quent impact on neural simulations, focusing on the Kuramoto and Izhikevich models. Both models were employed to simu late the dynamics of different brain regions, particularly focus ing on the introduction of noise that mimics errors originating from brain imaging techniques. Our analysis begins with the observation of how noise affects neuraldynamicsbysegmentingthesimulationsintothreephases: (1) the control phase before noise introduction, representing a brain’s natural state; (2) the branching point, where noise is in troduced as a representation of data acquisition errors in WBE; and (3) the simulation of both control data (undisturbed brain function) and noisy data (the behavior of a brain replica im pacted by measurement errors). Akeyfindingofthis work is the clear correlation between noise levels and the total error in both models, confirming that higher noise results in greater error. This underscores the critical im portance of using precise measurement techniques during the data acquisition phase and suggests the need for developing error-correction mechanisms to mitigate the impact of noise. We also investigated the impact of connectivity strength in specific brain regions, revealing distinct differences between the mod els. In the Kuramoto model, regions with higher connectivity contributed more to final error, while in the Izhikevich model, these same regions tended to reduce error as their connectivity increased. These findings are significant because they highlight the need for further investigation into measurement error in WBE, in ad dition to ongoing work on computational and hardware aspects of brain emulation. As demonstrated, noise introduced by data acquisition has a profound impact on neural simulation accu racy, and addressing this challenge is essential for achieving re liable WBE. Additionally, while the models employed in this study lack certain biological realism, including synaptic plastic ity and adaptive behavior, they still offer valuable insights into how noise and learning mechanisms may influence neural dy namics in computational models. This work lays the foundation for future research aimed at improving both the fidelity of neu ral simulations and the accuracy of data acquisition techniques. | en |
heal.sponsor | Ίδρυμα Λοχαγού Φανουράκη | el |
heal.sponsor | Captain Fanourakis Foundation | en |
heal.advisorName | Νικήτα, Κωνσταντίνα | el |
heal.advisorName | Nikita, Konstantina | en |
heal.committeeMemberName | Βουλόδημος, Αθανάσιος | el |
heal.committeeMemberName | Voulodimos, Athanasios | en |
heal.committeeMemberName | Νικήτα, Κωνσταντίνα | el |
heal.committeeMemberName | Nikita, Konstantina | en |
heal.committeeMemberName | Kaiser, Marcus | en |
heal.committeeMemberName | Κάιζερ, Μάρκους | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 48 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: