dc.contributor.author | Georgiou, Konstantina![]() |
en |
dc.contributor.author | Γεωργίου, Κωνσταντίνα![]() |
el |
dc.date.accessioned | 2025-06-12T09:13:04Z | |
dc.date.available | 2025-06-12T09:13:04Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/62049 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.29745 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Μεταφραστική Βιοιατρική Μηχανικής και Επιστήμης" | el |
dc.rights | Αναφορά Δημιουργού 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/gr/ | * |
dc.subject | Φαρμακευτική συμμόρφωση | el |
dc.subject | Μηχανική μάθηση | el |
dc.subject | Αλγόριθμοι συσταδοποίησης | el |
dc.subject | Προσαρμοσμένες παρεμβάσεις υγείας | el |
dc.subject | Medication adherence | en |
dc.subject | Machine learning | en |
dc.subject | Clustering algorithms | en |
dc.subject | Tailored healthcare interventions | en |
dc.title | Predictive modeling of medication adherence using machine learning techniques | en |
heal.type | masterThesis | |
heal.classification | Meachine learning | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2024-10 | |
heal.abstract | This thesis develops predictive models to assess medication adherence based on socioeconomic factors, using machine learning techniques. Unsupervised clustering methods, such as K-means and hierarchical clustering, were applied to two datasets: one from 429 patients at Jena University Hospital (Germany) and another from 81 individuals in Greece. The German sample (average age 63.54 years) showed higher adherence, while the Greek sample (average age 54.9 years) demonstrated greater variability. Key factors identified as predictive of higher adherence include age, caregiver involvement, unemployment, and lower education levels. The study highlights the potential of machine learning to create tailored healthcare interventions by predicting adherence behaviors, considering demographic and socioeconomic factors. | en |
heal.advisorName | Nikita, Konstantina | en |
heal.committeeMemberName | Stamou, Georgios | en |
heal.committeeMemberName | Voulodimos, Athanasios | en |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 57 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: