dc.contributor.author | Maniotis, Konstantinos - Marios![]() |
en |
dc.contributor.author | Μανιώτης, Κωνσταντίνος- Μάριος![]() |
el |
dc.date.accessioned | 2025-06-12T11:48:44Z | |
dc.date.available | 2025-06-12T11:48:44Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/62054 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.29750 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Vehicle Re-identification | en |
dc.subject | Aerial Surveillance | en |
dc.subject | Transformer Models | en |
dc.subject | Deep Learning | en |
dc.subject | UAV Imagery | en |
dc.subject | Επαναπροσδιορισμός οχήματος | el |
dc.subject | Εναέρια επιτήρηση | el |
dc.subject | Μοντέλα Transformer | el |
dc.subject | Βαθιά Μάθηση | el |
dc.subject | Εκόνες UAV | el |
dc.title | Facilitating vehicle re-identification across distinct UAV data captures | en |
dc.title | Δυνατότητα επαναπροσδιορισμού οχήματος σε διαφορετικές λήψεις δεδομένων UAV | el |
heal.type | masterThesis | |
heal.classification | Computer Vision | en |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2024-10-12 | |
heal.abstract | Vehicle re-identification (Re-ID) in UAV-captured aerial imagery poses challenges such as variations in perspective, scale, and occlusions. This research reproduces results from three established repositories—Relation Preserving Triplet Mining (RPTM), LuPerson for person Re-ID, and TransReID—before evaluating performance on a custom UAV-captured dataset, Suncity, representing real-world urban traffic. The proposed methodology includes the use of RPTM for optimizing triplet mining by respecting natural data groupings and TransReID, a transformer-based model designed to capture both global context and fine-grained features. Enhancements such as the Jigsaw Patch Module (JPM) to handle occlusions and the Side Information Embeddings (SIE) module to account for camera viewpoint and lighting variations further improve the model’s robustness. While the models performed well on benchmark repositories, including improvements in mean Average Precision (mAP) and Rank-1 accuracy, challenges were identified when applying the models to the complex Suncity dataset. Despite these challenges, transformer-based models demonstrated superior adaptability over traditional CNNs. This work contributes to advancements in vehicle Re-ID, with potential applications in traffic monitoring, surveillance, and urban planning. | en |
heal.advisorName | Karantzalos, Konstantinos | en |
heal.committeeMemberName | Karantzalos, Konstantinos | en |
heal.committeeMemberName | Stamou, Georgios | en |
heal.committeeMemberName | Voulodimos, Athanasios | en |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 75 σ. | el |
heal.fullTextAvailability | false | |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: