dc.contributor.author | Χάσπαρη, Θεοδώρα![]() |
|
dc.contributor.author | Chaspari, Theodora![]() |
|
dc.date.accessioned | 2025-06-17T06:57:04Z | |
dc.date.available | 2025-06-17T06:57:04Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/62075 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.29771 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | συναίσθημα στον λόγο | el |
dc.subject | Δυναμικά χαρακτηριστικά | el |
dc.subject | Πίσσα | el |
dc.subject | Emotion Recognition | en |
dc.subject | Pitch | en |
dc.subject | Formants | en |
dc.subject | AM-FM demodulation features | en |
dc.subject | GMMs | en |
dc.title | Αναγνώριση Συναισθήματος μέσω της Φωνής | el |
dc.contributor.department | Τομέας σημάτων ελέγχου και ρομποτικής | el |
heal.type | bachelorThesis | |
heal.classification | Συναισθηματική αναγνώριση | el |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2010-09-01 | |
heal.abstract | Emotion Recognition is a part of affective computing, which focuses on facilitating com-munication between humans and computers. In this diploma thesis, we examine emotion recognition based on speech. More specifically, basic features of emotion recognition, such as pitch, formants and utterance duration, are studied analytically. Besides these, it is supported that AM-FM modulation features can distinguish the fine variations of emotions in speech. Instant amplitude and frequency are computed through the Energy Separation Algorithm (ESA) based on the Teager Energy Operator (TEO). Statistical moments of them are used as features. These features are strongly smoothed with median filtering in order to remove the redundant information and keep only the essential information needed for emotion recognition. Experiments are conducted in two databases: the Berlin Database and the Aiginiteio Hospital Database of Emotional Speech, which include seven and five classes of basic emotions respectively. Classification is done with K-means algorithm, GMMs based on expectation maximization and dynamically modified GMMs. Results vary from 30%to 90%. The most powerful features, which produce the best results, seem to be the TEO-Autocorrelation-Envelope, the Area of Instant Amplitude and the Weighted Mean of Instant Frequency. | en |
heal.sponsor | ΕΜΠ | el |
heal.advisorName | Μαραγκός, Πέτρος Α. | |
heal.committeeMemberName | Μαραγκός, Πέτρος Α. | |
heal.committeeMemberName | Πρωτόπαπας, Αθανάσιος | |
heal.committeeMemberName | Ποταμιάνος, Γεράσιμος | |
heal.academicPublisher | Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 177 σ. | |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: