HEAL DSpace

Machine learning algorithms for detecting fatigue: An EEG data analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sofras, Michail en
dc.contributor.author Σοφράς Μιχαήλ el
dc.date.accessioned 2025-07-16T07:51:59Z
dc.date.available 2025-07-16T07:51:59Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/62167
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.29863
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) "Μεταφραστική Βιοιατρική Μηχανικής και Επιστήμης" el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject EEG (Electroencephalography) en
dc.subject Phase Lag Index (PLI) en
dc.subject Brain Networks en
dc.subject Machine Learning en
dc.subject Μηχανική Μάθηση el
dc.subject Πνευματική Κόπωση el
dc.subject Ηλεκτροεγκεφαλογράφημα el
dc.subject Δείκτης Καθυστέρησης Φάσης el
dc.subject Δίκτυα Εγκεφάλου el
dc.subject Mental Fatigue en
dc.title Machine learning algorithms for detecting fatigue: An EEG data analysis en
heal.type masterThesis
heal.classification Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2025-02-12
heal.abstract Mental fatigue considerably affects cognitive performance, decision-making, and general productivity in diverse fields such as healthcare, transportation, and military operations. Extended cognitive strain may result in diminished vigilance and increasing error rates, presenting significant hazards to safety and productivity. Electroencephalography (EEG), a non-invasive technique for monitoring cerebral activity, offers an objective approach to identify and categorize mental fatigue. This thesis introduces a robust machine learning framework for classifying EEG data into rest and fatigue states, highlighting the application of specialized feature selection methods and machine learning classifiers. Electroencephalogram (EEG) data were obtained from 20 subjects performing 54 trials, categorized into rest and fatigue groups. The preprocessing procedures involved artifact elimination, including the removal of noise from muscular activity and eye blinks, as well as bandpass filtering into five frequency bands: delta, theta, alpha, beta, and gamma. Functional connectivity was assessed with the Phase Lag Index (PLI), a reliable metric of phase synchronization among EEG channels, producing high-dimensional datasets. To address the problem of dimensionality, eleven feature selection techniques, such as LASSO, ReliefF, Recursive Feature Elimination with Correlation Bias Reduction (RFE-CBR), and Fisher Score, were employed to discern the features that are most important while preserving interpretability. Five classifiers were trained using the chosen features: k-Nearest Neighbors (KNN), Support Vector Machine (SVM) with radial basis function (RBF) and linear kernels, Linear Discriminant Analysis (LDA), and Random Forest (RF). Cross-validation methods were employed to guarantee the generalization of the chosen features across different subjects. Performance was assessed utilizing criteria including accuracy, sensitivity, specificity, and F1-Score. The findings indicated that feature selection significantly enhanced classification performance. LASSO was identified as the most effective feature selection algorithm, achieving a combined accuracy of 97.5% with only 19 features and exhibiting excellent performance metrics (accuracy, sensitivity, specificity, and F1-Score) across all classifiers, demonstrating its efficacy in EEG-based fatigue detection. Lasso identified features that distinguish between rest and fatigue states using EEG channel connections. Connectivity was predominantly focused in the Frontal and Central lobes, indicating their functions in cognitive control and sensorimotor integration. Delta and Theta rhythms exhibited the highest differentiation, indicating their involvement in restorative processes and sustained attention under fatigue. These findings highlight LASSO's accuracy in identifying features relevant to fatigue identification. The present research illustrates that employing feature selection methods not only reduces the dimensionality of EEG data but also improves model interpretability by concentrating on the most prominent features. The suggested methodology establishes a basis for additional studies in EEG-based fatigue detection and presents possible applications in clinical and working environments, where the assessment of mental fatigue is essential for enhancing safety and performance. en
heal.advisorName Matsopoulos, George en
heal.committeeMemberName Matsopoulos, George en
heal.committeeMemberName Manopoulos, Christos en
heal.committeeMemberName Tsanakas, Panayiotis en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 96 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα