HEAL DSpace

Semantic segmentation of marine biofouling images with attention U-Net

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karlatiras, Ioannis en
dc.contributor.author Καρλατήρας, Ιωάννης el
dc.date.accessioned 2025-09-19T10:43:23Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/62468
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.30164
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc/3.0/gr/ *
dc.subject Βιορύπανση el
dc.subject Μηχανική Μάθηση el
dc.subject Μηχανική Όραση el
dc.subject Σημασιολογική Κατάτμηση Εικόνων el
dc.subject Συνελικτικά Νευρωνικά Δίκτυα el
dc.subject Marine Biofouling en
dc.subject Machine Learning en
dc.subject Computer Vision en
dc.subject Semantic Segmentation en
dc.subject Convolutional Neural Networks en
dc.title Semantic segmentation of marine biofouling images with attention U-Net en
heal.type bachelorThesis
heal.classification Neural Networks en
heal.classification Marine Biofouling en
heal.dateAvailable 2026-09-18T21:00:00Z
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2025-02-27
heal.abstract Marine biofouling presents significant challenges in the maritime industry, including increased drag, fuel consumption, and maintenance costs. Traditional inspection and mitigation methods are labour-intensive and time-consuming, underscoring the need for automated approaches of biofouling detection and analysis. Various machine learning architectures, particularly convolutional neural networks (CNNs), have been utilised for this purpose. This dissertation aims to bridge an existing literature gap by introducing an enhanced Attention U-Net architecture specifically optimised for the semantic segmentation of marine biofouling in operational conditions. The proposed model incorporates additive soft attention gates within the skip connections of the traditional U-Net framework. This mechanism selectively emphasises relevant features by dynamically adjusting the importance of skip connection inputs, reducing noise and improving segmentation accuracy. The model was trained and tested on an annotated dataset of 352 in-water biofouling images collected from multiple ship hull surveys, provided by diving companies, classification societies and NTUA’s archive. It contains imagery captured under various environmental conditions, which enables better model generalisation. It achieves notable performance on both Dice coefficient and intersection-over-union (IoU) scores, suggesting an advancement in classification and localisation capabilities. The results have promising implications for deployment in automated inspection systems, potentially enhancing the efficiency of hull and offshore structure inspections by reducing manual effort and improving detection accuracy. This study provides a scalable solution to biofouling monitoring, filling a critical gap in the field and contributing to the growing need for autonomous biofouling management systems in the maritime industry. en
heal.advisorName Papalambrou, George en
heal.committeeMemberName Samuelides, Manolis en
heal.committeeMemberName Papadopoulos, Christos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας el
heal.academicPublisherID ntua
heal.numberOfPages 101 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα