| dc.contributor.author | Karlatiras, Ioannis
|
en |
| dc.contributor.author | Καρλατήρας, Ιωάννης
|
el |
| dc.date.accessioned | 2025-09-19T10:43:23Z | |
| dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/62468 | |
| dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.30164 | |
| dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση 3.0 Ελλάδα | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/gr/ | * |
| dc.subject | Βιορύπανση | el |
| dc.subject | Μηχανική Μάθηση | el |
| dc.subject | Μηχανική Όραση | el |
| dc.subject | Σημασιολογική Κατάτμηση Εικόνων | el |
| dc.subject | Συνελικτικά Νευρωνικά Δίκτυα | el |
| dc.subject | Marine Biofouling | en |
| dc.subject | Machine Learning | en |
| dc.subject | Computer Vision | en |
| dc.subject | Semantic Segmentation | en |
| dc.subject | Convolutional Neural Networks | en |
| dc.title | Semantic segmentation of marine biofouling images with attention U-Net | en |
| heal.type | bachelorThesis | |
| heal.classification | Neural Networks | en |
| heal.classification | Marine Biofouling | en |
| heal.dateAvailable | 2026-09-18T21:00:00Z | |
| heal.language | en | |
| heal.access | embargo | |
| heal.recordProvider | ntua | el |
| heal.publicationDate | 2025-02-27 | |
| heal.abstract | Marine biofouling presents significant challenges in the maritime industry, including increased drag, fuel consumption, and maintenance costs. Traditional inspection and mitigation methods are labour-intensive and time-consuming, underscoring the need for automated approaches of biofouling detection and analysis. Various machine learning architectures, particularly convolutional neural networks (CNNs), have been utilised for this purpose. This dissertation aims to bridge an existing literature gap by introducing an enhanced Attention U-Net architecture specifically optimised for the semantic segmentation of marine biofouling in operational conditions. The proposed model incorporates additive soft attention gates within the skip connections of the traditional U-Net framework. This mechanism selectively emphasises relevant features by dynamically adjusting the importance of skip connection inputs, reducing noise and improving segmentation accuracy. The model was trained and tested on an annotated dataset of 352 in-water biofouling images collected from multiple ship hull surveys, provided by diving companies, classification societies and NTUA’s archive. It contains imagery captured under various environmental conditions, which enables better model generalisation. It achieves notable performance on both Dice coefficient and intersection-over-union (IoU) scores, suggesting an advancement in classification and localisation capabilities. The results have promising implications for deployment in automated inspection systems, potentially enhancing the efficiency of hull and offshore structure inspections by reducing manual effort and improving detection accuracy. This study provides a scalable solution to biofouling monitoring, filling a critical gap in the field and contributing to the growing need for autonomous biofouling management systems in the maritime industry. | en |
| heal.advisorName | Papalambrou, George | en |
| heal.committeeMemberName | Samuelides, Manolis | en |
| heal.committeeMemberName | Papadopoulos, Christos | en |
| heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας | el |
| heal.academicPublisherID | ntua | |
| heal.numberOfPages | 101 σ. | el |
| heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: