HEAL DSpace

Reactive Solutions to Optimal Motion Planning for Mobile Robots using Reinforcement Learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rousseas, Panagiotis
dc.date.accessioned 2025-09-22T09:14:27Z
dc.date.available 2025-09-22T09:14:27Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/62482
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.30178
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Optimal Control en
dc.subject Safe Control en
dc.subject Motion Planning en
dc.subject Robust Control en
dc.subject Reinforcement Learning en
dc.subject Βέλτιστος Έλεγχος el
dc.subject Ασφαλής Έλεγχος el
dc.subject Σχεδιασμός Πορείας el
dc.subject Εύρωστος Έλεγχος el
dc.subject Ενισχυτική Μάθηση el
dc.title Reactive Solutions to Optimal Motion Planning for Mobile Robots using Reinforcement Learning en
dc.contributor.department Control Systems Laboratory el
heal.type doctoralThesis
heal.classification Robotics en
heal.classification Control Theory en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2025-03-12
heal.abstract Motion planning is one of the most fundamental problems of Robotics and has been a focal point for research since the infancy of the field. Autonomous operation and task accomplishment requires robotic navigation in the real world, where obstacles may pose a threat to the robot’s integrity and require careful examination to ensure safety. At the same time, modeling uncertainty, sensor noise and unknown obstacles require robust solutions and the integration of high-level planning (e.g. finding valid paths within the workspace) with low-level controllers, which handle a robot’s dynamics. To this end, this Thesis concentrates on solutions to various aspects of optimal motion planning through underlying position-feedback velocity fields. Treating problems from static/dynamic workspaces to disturbances and higher-order models, the underlying velocity fields are demonstrated to provide several benefits in real-world robotic control with an emphasis on mathematical rigor. The aim is to bridge the gap between high and low-level control without sacrificing provable guarantees of safety, convergence and –to the degree that it is possible– optimality. en
heal.sponsor The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the 4th Call for HFRI PhD Fellowships (Fellowship Number: 9110). en
heal.advisorName Κυριακόπουλος, Κωνσταντίνος
heal.committeeMemberName Κυριακόπουλος, Κωνσταντίνος
heal.committeeMemberName Ευάγγελος, Παπαδόπουλος
heal.committeeMemberName Δημαρόγκωνας, Δήμος
heal.committeeMemberName Μπεχλιούλης, Χαράλαμπος
heal.committeeMemberName Πουλακάκης, Ιωάννης
heal.committeeMemberName Τζαφέστας, Κωνσταντίνος
heal.committeeMemberName Κορδώνης, Ιωάννης
heal.academicPublisher Σχολή Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 323
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα