| dc.contributor.author |
Δούλου, Νίκη
|
el |
| dc.contributor.author |
Doulou, Niki
|
en |
| dc.date.accessioned |
2025-10-06T11:37:46Z |
|
| dc.date.available |
2025-10-06T11:37:46Z |
|
| dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/62651 |
|
| dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.30347 |
|
| dc.rights |
Default License |
|
| dc.subject |
Heterogeneous Memory Systems |
en |
| dc.subject |
Database Workloads |
en |
| dc.subject |
Interference aware classification |
en |
| dc.subject |
Ετερογενή Συστήματα Μνήμης |
el |
| dc.subject |
Βάσεις δεδομένων |
el |
| dc.subject |
Ταξινόμηση με επίγνωση παρεμβολών |
el |
| dc.title |
Interference-aware classification and deployment of database workloads on heterogeneous memory systems |
en |
| dc.title |
Ταξινόμηση με επίγνωση παρεμβολών και εκτέλεση εφαρμογών βάσεων δεδομένων σε ετερογενές σύστημα μνήμης |
el |
| heal.type |
bachelorThesis |
|
| heal.classification |
Σχεδιασμός Ενσωματωμένων Συστημάτων |
el |
| heal.language |
el |
|
| heal.language |
en |
|
| heal.access |
free |
|
| heal.recordProvider |
ntua |
el |
| heal.publicationDate |
2025-03-14 |
|
| heal.abstract |
Over the recent years, the rapid growth of applications has led to a corresponding increase in
the computational requirements and the volume of data. At the same time, traditional memory
technologies based on DRAM technologies have reached their physical limits in terms of scalability
and sustainability. As a result, a novel memory technology architecture has been introduced, based on
heterogeneous memory systems, that integrate DRAM and NVM technologies. However, some several
challenges arise regarding application placement and their management. In this work, it is conducted an
extensive profiling analysis and characterization of database applications. The experimental analysis is
performed both in an isolated computing system environment and in a interference-aware system using
specific benchmarks that stress the resources of the system. Additionally, machine learning models
are trained based on the data collected during the profiling analysis, and applications are classified
into memory-bound, cpu-bound or bandwidth-bound depending on their performance. The models
achieve prediction accuracy over 90%. Finally, conclusions can be drawn regarding the placement of
applications in the heterogeneous system. |
en |
| heal.advisorName |
Σούντρης, Δημήτριος |
el |
| heal.committeeMemberName |
Ξύδης, Σωτήριος |
el |
| heal.committeeMemberName |
Λεντάρης, Γεώργιος |
el |
| heal.committeeMemberName |
Σούντρης, Δημήτριος |
el |
| heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI |
el |
| heal.academicPublisherID |
ntua |
|
| heal.numberOfPages |
89 σ. |
el |
| heal.fullTextAvailability |
false |
|