HEAL DSpace

Interference-aware classification and deployment of database workloads on heterogeneous memory systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Δούλου, Νίκη el
dc.contributor.author Doulou, Niki en
dc.date.accessioned 2025-10-06T11:37:46Z
dc.date.available 2025-10-06T11:37:46Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/62651
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.30347
dc.rights Default License
dc.subject Heterogeneous Memory Systems en
dc.subject Database Workloads en
dc.subject Interference aware classification en
dc.subject Ετερογενή Συστήματα Μνήμης el
dc.subject Βάσεις δεδομένων el
dc.subject Ταξινόμηση με επίγνωση παρεμβολών el
dc.title Interference-aware classification and deployment of database workloads on heterogeneous memory systems en
dc.title Ταξινόμηση με επίγνωση παρεμβολών και εκτέλεση εφαρμογών βάσεων δεδομένων σε ετερογενές σύστημα μνήμης el
heal.type bachelorThesis
heal.classification Σχεδιασμός Ενσωματωμένων Συστημάτων el
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2025-03-14
heal.abstract Over the recent years, the rapid growth of applications has led to a corresponding increase in the computational requirements and the volume of data. At the same time, traditional memory technologies based on DRAM technologies have reached their physical limits in terms of scalability and sustainability. As a result, a novel memory technology architecture has been introduced, based on heterogeneous memory systems, that integrate DRAM and NVM technologies. However, some several challenges arise regarding application placement and their management. In this work, it is conducted an extensive profiling analysis and characterization of database applications. The experimental analysis is performed both in an isolated computing system environment and in a interference-aware system using specific benchmarks that stress the resources of the system. Additionally, machine learning models are trained based on the data collected during the profiling analysis, and applications are classified into memory-bound, cpu-bound or bandwidth-bound depending on their performance. The models achieve prediction accuracy over 90%. Finally, conclusions can be drawn regarding the placement of applications in the heterogeneous system. en
heal.advisorName Σούντρης, Δημήτριος el
heal.committeeMemberName Ξύδης, Σωτήριος el
heal.committeeMemberName Λεντάρης, Γεώργιος el
heal.committeeMemberName Σούντρης, Δημήτριος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI el
heal.academicPublisherID ntua
heal.numberOfPages 89 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής