| dc.contributor.author | Στυλιανού, Ανδρέας
|
el |
| dc.contributor.author | Stylianou, Andreas
|
en |
| dc.date.accessioned | 2025-10-16T06:15:09Z | |
| dc.date.available | 2025-10-16T06:15:09Z | |
| dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/62718 | |
| dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.30414 | |
| dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
| dc.subject | Εξόρυξη | el |
| dc.subject | Εξόρυξη Διαδικασιών | el |
| dc.subject | Λογισμικό | el |
| dc.subject | Διαδικασιών | el |
| dc.subject | Εξόρυξη Δεδομένων | el |
| dc.subject | Software | en |
| dc.subject | Celonis | en |
| dc.subject | Data Mining | en |
| dc.subject | Process Mining | en |
| dc.subject | Process | en |
| dc.title | Implementation of Business Process Mining using Celonis | en |
| dc.contributor.department | Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνα | el |
| heal.type | bachelorThesis | |
| heal.classification | Industrial Engineering | en |
| heal.language | en | |
| heal.access | free | |
| heal.recordProvider | ntua | el |
| heal.publicationDate | 2025-06 | |
| heal.abstract | This thesis investigates the application of process mining techniques, with a particular focus on the Celonis platform, to address inefficiencies in business processes within modern organizations. Traditional Business Process Management (BPM) approaches often rely on static models and subjective inputs, which can lead to suboptimal process design and limited adaptability in dynamic business environments. While Business Intelligence (BI) systems offer data-driven insights, they are frequently constrained by their dependence on structured data and lack the contextual analysis necessary for actionable improvements. In contrast, process mining leverages event logs generated by information systems to objectively discover, monitor, and enhance actual business processes. By bridging the gap between operational data and process models, process mining enables organizations to perform conformance checking, detect deviations, and uncover bottlenecks, thereby supporting data-driven decision-making and continuous improvement. The thesis presents a comprehensive review of process mining theory, tools, and methodologies, followed by an in-depth case study utilizing Celonis to analyze real-world business processes . The results demonstrate the effectiveness of process mining in identifying inefficiencies, supporting compliance, and providing actionable recommendations for process optimization. The findings underscore the growing importance of process mining in the digital transformation of organizations, highlighting its potential to enhance operational efficiency, reduce costs, and foster a culture of data-driven management. Limitations and future research directions are also discussed, emphasizing the need for improved data quality and further integration of process mining with emerging technologies. | en |
| heal.advisorName | Παναγιώτου, Νίκος | |
| heal.committeeMemberName | Πόνης, Σταύρος | |
| heal.committeeMemberName | Χατζηστέλιος, Γεώργιος | |
| heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Βιομηχανικής Διοίκησης και Επιχειρησιακής Έρευνας | el |
| heal.academicPublisherID | ntua | |
| heal.numberOfPages | 138 | |
| heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: