HEAL DSpace

Implementation of Business Process Mining using Celonis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Στυλιανού, Ανδρέας el
dc.contributor.author Stylianou, Andreas en
dc.date.accessioned 2025-10-16T06:15:09Z
dc.date.available 2025-10-16T06:15:09Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/62718
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.30414
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Εξόρυξη el
dc.subject Εξόρυξη Διαδικασιών el
dc.subject Λογισμικό el
dc.subject Διαδικασιών el
dc.subject Εξόρυξη Δεδομένων el
dc.subject Software en
dc.subject Celonis en
dc.subject Data Mining en
dc.subject Process Mining en
dc.subject Process en
dc.title Implementation of Business Process Mining using Celonis en
dc.contributor.department Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνα el
heal.type bachelorThesis
heal.classification Industrial Engineering en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2025-06
heal.abstract This thesis investigates the application of process mining techniques, with a particular focus on the Celonis platform, to address inefficiencies in business processes within modern organizations. Traditional Business Process Management (BPM) approaches often rely on static models and subjective inputs, which can lead to suboptimal process design and limited adaptability in dynamic business environments. While Business Intelligence (BI) systems offer data-driven insights, they are frequently constrained by their dependence on structured data and lack the contextual analysis necessary for actionable improvements. In contrast, process mining leverages event logs generated by information systems to objectively discover, monitor, and enhance actual business processes. By bridging the gap between operational data and process models, process mining enables organizations to perform conformance checking, detect deviations, and uncover bottlenecks, thereby supporting data-driven decision-making and continuous improvement. The thesis presents a comprehensive review of process mining theory, tools, and methodologies, followed by an in-depth case study utilizing Celonis to analyze real-world business processes . The results demonstrate the effectiveness of process mining in identifying inefficiencies, supporting compliance, and providing actionable recommendations for process optimization. The findings underscore the growing importance of process mining in the digital transformation of organizations, highlighting its potential to enhance operational efficiency, reduce costs, and foster a culture of data-driven management. Limitations and future research directions are also discussed, emphasizing the need for improved data quality and further integration of process mining with emerging technologies. en
heal.advisorName Παναγιώτου, Νίκος
heal.committeeMemberName Πόνης, Σταύρος
heal.committeeMemberName Χατζηστέλιος, Γεώργιος
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Βιομηχανικής Διοίκησης και Επιχειρησιακής Έρευνας el
heal.academicPublisherID ntua
heal.numberOfPages 138
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα