HEAL DSpace

Machine Learning Assessment of EEG Data in a fatigue related n-back task

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charalampous, Ioannis en
dc.contributor.author Χαραλάμπους, Ιωάννης el
dc.date.accessioned 2025-12-04T07:47:40Z
dc.date.available 2025-12-04T07:47:40Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/62987
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.30683
dc.rights Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nd/3.0/gr/ *
dc.subject SHAP en
dc.subject Ψυχική κόπωση el
dc.subject Εντοπισμός πηγής en
dc.subject Εργασία n-back el
dc.subject CNN-BiLSTM en
dc.subject EEG en
dc.subject source localization en
dc.subject Mental fatigue en
dc.title Machine Learning Assessment of EEG Data in a fatigue related n-back task en
heal.type bachelorThesis
heal.classification Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2025-06-24
heal.abstract Mental fatigue significantly seriously impacts cognitive functions and decision-making, especially in safety-related environments like aviation, medicine, and transportation. This thesis presents a methodology for detecting mental fatigue from electroencephalography (EEG) signals recorded while doing an n-back working memory task. A hybrid deep learning model that combines a convolutional neural network (CNN) and bidirectional long short-term memory network (BiLSTM) was developed to classify EEG signals as ”fatigued” and ”rested” states. In order to enhance the spatial resolution of the EEG signals, source localization was performed using the sLORETA algorithm, which projects scalp-recorded activity onto cortical surfaces. The model was trained and tested using 10-fold cross-validation, and achieved an average accuracy of 91.55%, demonstrating that it is robust and generalized across subjects. Explainability was also ensured through SHapley Additive exPlanations (SHAP), which provided insight regarding the most salient cortical sources that are responsible for the model predictions. The analysis highlighted contributions from frontal and parietal regions, that are consistent with neuroscientific findings on fatigue-related changes in brain activity. The dataset was collected from recordings of the participants in both rested and sleep-deprived conditions, enabling the model to learn discriminative patterns associated with mental fatigue. This work not only offers a high-performing and also explainable model for EEG-based fatigue assessment but also reduces the gap between deep learning and neuroscience by connecting machine learning predictions with physiologically meaningful brain processes. en
heal.advisorName Matsopoulos, George
heal.committeeMemberName Tsanakas, Panayiotis
heal.committeeMemberName Manopoulos, Christos
heal.committeeMemberName Matsopoulos, George
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα