HEAL DSpace

ResQu-Net: Effective prostate’s peripheral zone segmentation leveraging the representational power of attention-based mechanisms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zaridis, Dimitrios
dc.contributor.author Mylona, Eugenia
dc.contributor.author Tachos, Nikolaos
dc.contributor.author Kalantzopoulos, Charalampos
dc.contributor.author Marias, Kostas
dc.contributor.author Tsiknakis, Manolis
dc.contributor.author Matsopoulos, George
dc.contributor.author Koutsouris, Dimitrios
dc.contributor.author Fotiadis, Dimitrios
dc.date.accessioned 2026-01-22T10:00:02Z
dc.date.available 2026-01-22T10:00:02Z
dc.identifier.issn 1746-8108 el
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/63243
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.30938
dc.rights Αναφορά Δημιουργού 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/gr/ *
dc.subject Deep learning en
dc.title ResQu-Net: Effective prostate’s peripheral zone segmentation leveraging the representational power of attention-based mechanisms en
heal.type journalArticle
heal.classification Deep Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2024-03-06
heal.bibliographicCitation Zaridis, D. I., Mylona, E., Tachos, N., Kalantzopoulos, C. Ν., Marias, K., Tsiknakis, M., Matsopoulos, G. K., Koutsouris, D. D., & Fotiadis, D. I. (2024). ResQu-Net: Effective prostate’s peripheral zone segmentation leveraging the representational power of attention-based mechanisms. Biomedical Signal Processing and Control, 93, 106187. https://doi.org/10.1016/j.bspc.2024.106187 en
heal.abstract Prostate cancer is a leading cause of male cancer worldwide. With more than 70 % of prostate cancers arising in the peripheral zone of the prostate, accurate segmentation of this region is of paramount importance for the effective diagnosis and treatment of the disease. Although peripheral zone is well recognized as one of the most challenging regions to delineate within the prostate, no algorithms specifically tailored for this segmentation task are currently available. The present study introduces a new deep learning (DL) algorithm, named as ResQu-Net, which is designed to accurately segment the peripheral zone (PZ) of the prostate on T2-weighted magnetic resonance imaging (MRI). Using three publicly available datasets, the ResQu-Net outperformed the six DL segmentation models used for comparison, namely the Attention U-Net, the Dense2U-Net, the Proper-Net, the TransU-net, the U-Net, and the USE-Net, demonstrating superior performance for different anatomical regions, such as the apex, the midgland and the base. The assessment of the suggested approach was conducted not only quantitatively (Sensitivity, Balanced Accuracy, Dice Score, 95 % Hausdorff Distance, and Average Surface Distance) but also qualitatively. For the qualitative evaluation the feature maps obtained from the last layers of each model were compared with the Density Map of the Ground Truth annotations using root mean squared error. Overall, the ResQu-Net model exhibits improved performance compared to other models, of more than 5 % and 1.87 mm in terms of Dice Score and 95 % Hausdorff Distance, respectively. These advancements may contribute significantly in addressing the challenges associated with PZ segmentation, and ultimately enabling improved clinical decision-making and patient outcomes. en
heal.sponsor This work is supported by the ProCancer-I project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 952159 and reflects only the authors’ view. The Commission is not responsible for any use that may be made of the information it contains. en
heal.publisher Elsevier en
heal.journalName Biomedical Signal Processing and Control en
heal.journalType peer-reviewed
heal.fullTextAvailability false
dc.identifier.doi https://doi.org/10.1016/j.bspc.2024.106187 el


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού 3.0 Ελλάδα