HEAL DSpace

Phenomenical analysis of linear viscoelastic media

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theocaris, PS en
dc.date.accessioned 2014-03-01T01:05:27Z
dc.date.available 2014-03-01T01:05:27Z
dc.date.issued 1966 en
dc.identifier.issn 0303402X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/8843
dc.subject Characteristic Function en
dc.subject Constitutive Equation en
dc.subject Linear Viscoelasticity en
dc.subject Mechanical Property en
dc.title Phenomenical analysis of linear viscoelastic media en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF01500044 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF01500044 en
heal.publicationDate 1966 en
heal.abstract Simple types of constitutive equations appropriate to materials exhibiting linear viscoelasticity are derived from approximate relationships interconnecting the characteristic functions which describe the transient mechanical properties of rheologically simple substances. It has been previously shown experimentally that the pair of differential or integral operators necessary to define the viscoelastic behaviour of a linear material along the whole viscoelastic spectrum may be reduced, to a high degree of approximation, to one operator relationship and an initial value. An indirect method is introduced which yields upper and lower bounds for the less sensitive characteristic functions expressing the bulk and the lateral contraction ratio variation. The constitutive equations for the bulk compliance and modulus, as well as the complementary lateral contraction ratio functions for creep and relaxation are expressed by simple product correction formulas, where the values of these functions at the n-subinternal of time are defined in terms of their corresponding initial values at the glassy or rubbery state multiplied by the ratios of the consecutive values of the corresponding extension compliance or modulus. The results checked well with extensive experimental evidence on various types of linear materials, as well as with the values calculated from the corresponding values of the other characteristic functions related to them. © 1966 Dr. Dietrich Steinkopff Verlag. en
heal.publisher Steinkopff-Verlag en
heal.journalName Kolloid-Zeitschrift & Zeitschrift für Polymere en
dc.identifier.doi 10.1007/BF01500044 en
dc.identifier.volume 209 en
dc.identifier.issue 1 en
dc.identifier.spage 34 en
dc.identifier.epage 43 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής