dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Ioakimidis, N |
en |
dc.date.accessioned |
2014-03-01T01:05:36Z |
|
dc.date.available |
2014-03-01T01:05:36Z |
|
dc.date.issued |
1976 |
en |
dc.identifier.issn |
0044-2275 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8897 |
|
dc.subject |
Linear Equations |
en |
dc.subject |
Numerical Quadrature |
en |
dc.subject |
Singular Integral Equation |
en |
dc.subject |
Stress Intensity Factor |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
The symmetrically branched crack in an infinite elastic medium |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01595131 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01595131 |
en |
heal.language |
English |
en |
heal.publicationDate |
1976 |
en |
heal.abstract |
The plane elastostatic problem of a symmetrically branched crack in an infinite isotropic body loaded by normal stresses perpendicular to the main crack axis at infinity was studied by using the method of complex potentials. The problem was reduced to a system of three singular integral equations. By means of an approximation of the integrals through the Gauss and Lobatto numerical quadrature procedures, these singular integral equations were transformed into a system of linear equations, which can be readily solved. The stress intensity factors at the tips of the branched crack were computed directly from the solution of the above system of linear equations and were compared with the already existing experimental solutions. © 1976 Birkhäuser-Verlag. |
en |
heal.publisher |
Birkhäuser-Verlag |
en |
heal.journalName |
Zeitschrift für angewandte Mathematik und Physik ZAMP |
en |
dc.identifier.doi |
10.1007/BF01595131 |
en |
dc.identifier.isi |
ISI:A1976CS99900012 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
801 |
en |
dc.identifier.epage |
814 |
en |