HEAL DSpace

On the numerical solution of Cauchy type singular integral equations and the determination of stress intensity factors in case of complex singularities

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theocaris, PS en
dc.contributor.author Ioakimidis, NI en
dc.date.accessioned 2014-03-01T01:05:38Z
dc.date.available 2014-03-01T01:05:38Z
dc.date.issued 1977 en
dc.identifier.issn 00442275 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/8913
dc.subject jacobi polynomial en
dc.subject Linear Equations en
dc.subject Numerical Integration en
dc.subject Numerical Solution en
dc.subject Singular Integral Equation en
dc.subject Stress Intensity Factor en
dc.subject Weight Function en
dc.title On the numerical solution of Cauchy type singular integral equations and the determination of stress intensity factors in case of complex singularities en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF01601675 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF01601675 en
heal.publicationDate 1977 en
heal.abstract A Cauchy type singular integral equation along a finite real interval and with a weight function with complex singularities at the end-points of the integration interval can be numerically solved by reduction to a system of linear equations, by using an appropriate numerical integration rule associated with the Jacobi polynomials, in exactly the same way used for the case of real singularities. For the numerical solution of such an equation arising in plane elasticity crack problems and the evaluation of stress intensity factors at crack tips, the Lobatto-Jacobi numerical integration rule is the most appropriate. © 1977 Birkhäuser Verlag. en
heal.publisher Birkhäuser-Verlag en
heal.journalName Zeitschrift für angewandte Mathematik und Physik ZAMP en
dc.identifier.doi 10.1007/BF01601675 en
dc.identifier.volume 28 en
dc.identifier.issue 6 en
dc.identifier.spage 1085 en
dc.identifier.epage 1098 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής