dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Ioakimidis, NI |
en |
dc.date.accessioned |
2014-03-01T01:05:40Z |
|
dc.date.available |
2014-03-01T01:05:40Z |
|
dc.date.issued |
1978 |
en |
dc.identifier.issn |
00015970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8923 |
|
dc.subject |
Linear System of Equations |
en |
dc.subject |
Numerical Integration |
en |
dc.subject |
Singular Integral Equation |
en |
dc.subject |
Stress Intensity Factor |
en |
dc.title |
A method of solution of the problem of the unsymmetric cruciform crack in an infinite plane isotropic elastic medium |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01176631 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01176631 |
en |
heal.publicationDate |
1978 |
en |
heal.abstract |
The problem of a cruciform crack with unequal arms in an infinite isotropic elastic medium under conditions of generalized plane stress or plane strain is reduced, by using Muskhelishvili's [1] complex potentials technique, to a system of two real Cauchy type singular integral equations. The Gauss-Legendre or the Lobatto-Chebyshev numerical integration methods can be further used for the reduction of the system of these equations to a linear system of equations. Values of the stress intensity factors, obtained numerically for a special geometry and loading case, are also given. © 1978 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01176631 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
127 |
en |
dc.identifier.epage |
133 |
en |