dc.contributor.author |
Kioustelidis, JB |
en |
dc.contributor.author |
Spyropoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T01:05:42Z |
|
dc.date.available |
2014-03-01T01:05:42Z |
|
dc.date.issued |
1978 |
en |
dc.identifier.issn |
0010-485X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8938 |
|
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.title |
L1 approximations of strictly convex functions by means of first degree splines |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02241900 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02241900 |
en |
heal.language |
English |
en |
heal.publicationDate |
1978 |
en |
heal.abstract |
The L1 approximation of strictly convex functions by means of first degree splines with a fixed number of knots is studied. The main theoretical results are a system of equations for the knots, which solves the problem, and an estimate of the approximation error. The error estimation allows the determination of bounds for the number of knots needed so that the L1 approximation error does not exceed a given number. Finally, an algorithm is used, by means of which a solution to the system can be obtained. © 1978 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Computing |
en |
dc.identifier.doi |
10.1007/BF02241900 |
en |
dc.identifier.isi |
ISI:A1978ER93800004 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
35 |
en |
dc.identifier.epage |
45 |
en |