dc.contributor.author |
Tsamasphyros, G |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:44Z |
|
dc.date.available |
2014-03-01T01:05:44Z |
|
dc.date.issued |
1979 |
en |
dc.identifier.issn |
00063835 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8957 |
|
dc.subject |
Contour Integration |
en |
dc.subject |
Quadrature Formula |
en |
dc.subject |
Singular Integral |
en |
dc.subject.other |
ELASTICITY |
en |
dc.subject.other |
FRACTURE MECHANICS |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES |
en |
dc.title |
Cubature formulas for the evaluation of surface singular integrals |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01930990 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01930990 |
en |
heal.publicationDate |
1979 |
en |
heal.abstract |
Some cubature formulas for the evaluation of surface singular integrals are presented. The singular integral is considered as an iterated integral and these line integrals are calculated by using the modified quadrature formulas for integrals possessing real or complex poles, i.e. for singular integrals or regular ones. The error is obtained as the sum of two contour integrals. An estimate of the error for the Gauss-Jacobi and the Gauss-Chebyshev case is obtained. © 1979 BIT Foundations. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
BIT |
en |
dc.identifier.doi |
10.1007/BF01930990 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
368 |
en |
dc.identifier.epage |
377 |
en |