dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Ioakimidis, NI |
en |
dc.date.accessioned |
2014-03-01T01:05:45Z |
|
dc.date.available |
2014-03-01T01:05:45Z |
|
dc.date.issued |
1979 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8958 |
|
dc.subject |
jacobi method |
en |
dc.subject |
Linear Equations |
en |
dc.subject |
Singular Integral Equation |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
ELASTICITY |
en |
dc.title |
The V-notched elastic half-plane problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01176138 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01176138 |
en |
heal.language |
English |
en |
heal.publicationDate |
1979 |
en |
heal.abstract |
The problem of a V-notched isotropic elastic half-plane under generalized plane stress or plane strain conditions can be reduced, by using the complex variable technique, to a complex Cauchy type singular integral equation along one of the V-notch edges. This equation can be numerically solved by use of the Gauss-Jacobi method and reduction to a system of linear equations. The values of the stress intensity factor KI at the V-notch tip were evaluated for some notch angles in the case of pure tension and the results obtained are in accordance with the available results in the case of a V-notched finite isotropic plane elastic medium. The difficulties faced in evaluating KI are investigated and a discussion on them is made. The method is also applicable even when the V-notch edges are curvilinear and their loading arbitrary. © 1979 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01176138 |
en |
dc.identifier.isi |
ISI:A1979HA93200010 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
125 |
en |
dc.identifier.epage |
140 |
en |