dc.contributor.author |
Ioakimidis, NI |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:45Z |
|
dc.date.available |
2014-03-01T01:05:45Z |
|
dc.date.issued |
1979 |
en |
dc.identifier.issn |
00015970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8960 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Singular Integral Equation |
en |
dc.subject.other |
FRACTURE MECHANICS |
en |
dc.title |
The second fundamental crack problem and the rigid line inclusion problem in plane elasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01176257 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01176257 |
en |
heal.publicationDate |
1979 |
en |
heal.abstract |
The second fundamental problem of plane isotropic elasticity for a cracked infinite medium, that is the problem in which the displacement derivatives are given along the crack edges, as well as the closely related rigid line inclusion problem in plane elasticity are treated by using the method of complex potentials. Without restrictive assumptions on geometry and boundary conditions, these problems are reduced to a complex Cauchy type singular integral equation along the crack or the inclusion, the numerical solution of which can easily be obtained by using the Lobatto-Chebyshev method. © 1979 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01176257 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
51 |
en |
dc.identifier.epage |
61 |
en |