dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:46Z |
|
dc.date.available |
2014-03-01T01:05:46Z |
|
dc.date.issued |
1979 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8971 |
|
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
STRESSES - Analysis |
en |
dc.subject.other |
STRUCTURAL ANALYSIS - Mathematical Mdels |
en |
dc.subject.other |
CANTILEVER HELICOIDAL BEAMS |
en |
dc.subject.other |
FLEXIBILITY MATRIX |
en |
dc.subject.other |
BEAMS AND GIRDERS |
en |
dc.title |
Flexibility matrix for skew-curved beams |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0020-7683(79)90004-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0020-7683(79)90004-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
1979 |
en |
heal.abstract |
In this paper, based on the principle of virtual work, the formulation of the flexibility matrix and the static analysis of a skew-curved beam in the most general case of loading and response are presented. Each differential element of the centroidal axis of the beam is given six degrees of freedom; namely, three translations and three rotations. Three internal forces and three internal moments are assumed to act at each point of the centroidal axis of the beam. Finally, the results of the method are illustrated through the derivation of the flexibility influence functions, associated with a cantilever helicoidal beam. © 1979. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/0020-7683(79)90004-0 |
en |
dc.identifier.isi |
ISI:A1979HP32300004 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
783 |
en |
dc.identifier.epage |
794 |
en |