dc.contributor.author |
Ioakimidis, NI |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:46Z |
|
dc.date.available |
2014-03-01T01:05:46Z |
|
dc.date.issued |
1979 |
en |
dc.identifier.issn |
00137944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8981 |
|
dc.subject |
Stress Intensity Factor |
en |
dc.subject.other |
FRACTURE MECHANICS |
en |
dc.title |
On the photoelastic determination of complex stress intensity factors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0013-7944(79)90089-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0013-7944(79)90089-4 |
en |
heal.publicationDate |
1979 |
en |
heal.abstract |
An improvement of the one-parameter extrapolation method of photoelastic determination of complex (mixed-mode) stress intensity factors at straight or curvilinear crack tips in a plane isotropic elastic medium due to Smith et al. [12, 13] can be achieved by measuring the absolute value of such a factor on the isochromatic fringes along properly selected polar directions and not at the maxima of the isochromatic fringes. In this way, the unknown value of the constant term of the stress field near the crack tip is taken into account. It is seen that it is always possible to find at least one appropriate polar direction to measure the absolute value of the stress intensity factor. In the case of Mode I stress intensity factors, these polar angles are θ{symbol} = ± 120° and not θ{symbol} = ± 90° as generally considered previously. Some numerical results are also presented in this special case and show the efficiency of the present method. © 1979. |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/0013-7944(79)90089-4 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
463 |
en |
dc.identifier.epage |
468 |
en |