HEAL DSpace

On the solution of the sector problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsamasphyros, G en
dc.contributor.author Theocaris, PS en
dc.date.accessioned 2014-03-01T01:05:47Z
dc.date.available 2014-03-01T01:05:47Z
dc.date.issued 1979 en
dc.identifier.issn 03743535 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/8983
dc.subject Asymptotic Expansion en
dc.subject Boundary Condition en
dc.subject Functional Dependency en
dc.subject Infinite Series en
dc.subject mellin transform en
dc.subject.other ELASTICITY en
dc.subject.other STRESSES en
dc.title On the solution of the sector problem en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00041099 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00041099 en
heal.publicationDate 1979 en
heal.abstract A rigorous study of the sector problem is presented by using the Mellin transform technique. The stress function is obtained as an asymptotic expansion of the complex inversion integral. The number of terms of this expansion, as well as the differentiability of the stress function, depend on the differential properties of boundary conditions on the radial edges. If these boundary conditions belong to C∞, this asymptotic expansion is transformed to a uniformly convergent infinite series. The coefficients of the series, which depend only on the boundary conditions along the circumferential edges, are calculated by applying a bi-orthogonality condition, or, by a technique based on the Betti formula. © 1979 Sijthoff & Noordhoff International Publishers. en
heal.publisher Kluwer Academic Publishers en
heal.journalName Journal of Elasticity en
dc.identifier.doi 10.1007/BF00041099 en
dc.identifier.volume 9 en
dc.identifier.issue 3 en
dc.identifier.spage 271 en
dc.identifier.epage 281 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής