dc.contributor.author | Tsamasphyros, G | en |
dc.contributor.author | Theocaris, PS | en |
dc.date.accessioned | 2014-03-01T01:05:47Z | |
dc.date.available | 2014-03-01T01:05:47Z | |
dc.date.issued | 1979 | en |
dc.identifier.issn | 03743535 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/8983 | |
dc.subject | Asymptotic Expansion | en |
dc.subject | Boundary Condition | en |
dc.subject | Functional Dependency | en |
dc.subject | Infinite Series | en |
dc.subject | mellin transform | en |
dc.subject.other | ELASTICITY | en |
dc.subject.other | STRESSES | en |
dc.title | On the solution of the sector problem | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1007/BF00041099 | en |
heal.identifier.secondary | http://dx.doi.org/10.1007/BF00041099 | en |
heal.publicationDate | 1979 | en |
heal.abstract | A rigorous study of the sector problem is presented by using the Mellin transform technique. The stress function is obtained as an asymptotic expansion of the complex inversion integral. The number of terms of this expansion, as well as the differentiability of the stress function, depend on the differential properties of boundary conditions on the radial edges. If these boundary conditions belong to C∞, this asymptotic expansion is transformed to a uniformly convergent infinite series. The coefficients of the series, which depend only on the boundary conditions along the circumferential edges, are calculated by applying a bi-orthogonality condition, or, by a technique based on the Betti formula. © 1979 Sijthoff & Noordhoff International Publishers. | en |
heal.publisher | Kluwer Academic Publishers | en |
heal.journalName | Journal of Elasticity | en |
dc.identifier.doi | 10.1007/BF00041099 | en |
dc.identifier.volume | 9 | en |
dc.identifier.issue | 3 | en |
dc.identifier.spage | 271 | en |
dc.identifier.epage | 281 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |