dc.contributor.author |
Uzunoglu, NK |
en |
dc.contributor.author |
Fikioris, JG |
en |
dc.date.accessioned |
2014-03-01T01:05:47Z |
|
dc.date.available |
2014-03-01T01:05:47Z |
|
dc.date.issued |
1979 |
en |
dc.identifier.issn |
0305-4470 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8985 |
|
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.title |
Scattering from an infinite dielectric cylinder embedded into another |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0305-4470/12/6/011 |
en |
heal.identifier.secondary |
011 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0305-4470/12/6/011 |
en |
heal.language |
English |
en |
heal.publicationDate |
1979 |
en |
heal.abstract |
In this work the scattering from an infinite dielectric cylinder embedded into another cylinder is considered. In the case of an eccentric circular cylinder the problem is solved using the classical separation of variables techniques combined with related translational addition theorems. When the difference in the indices of refraction of the cylinders is small, a perturbation series is developed up to second order. For non-circular arbitrary inhomogeneities, an integral equation method is developed by employing the homogeneous scatterer Green function. Numerical results are computed for circular cylindrical inhomogeneities; the convergence of the perturbation series and the properties of the scattered field are discussed. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Journal of Physics A: General Physics |
en |
dc.identifier.doi |
10.1088/0305-4470/12/6/011 |
en |
dc.identifier.isi |
ISI:A1979GZ56500011 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
825 |
en |
dc.identifier.epage |
834 |
en |