dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:47Z |
|
dc.date.available |
2014-03-01T01:05:47Z |
|
dc.date.issued |
1980 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8996 |
|
dc.subject |
Closed Form Solution |
en |
dc.subject |
Degree of Freedom |
en |
dc.subject |
Static Analysis |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
BEAMS AND GIRDERS |
en |
dc.title |
A closed form solution for the static analysis of continuous skew-curved beams |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01441243 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01441243 |
en |
heal.language |
English |
en |
heal.publicationDate |
1980 |
en |
heal.abstract |
Based on the principle of superposition, the closed form solution for the static analysis of a continuous skew-curved beam in the most general case of response and loading is presented. Each differential element of the centroidal axis of the beam is given six degrees of freedom: three translations and three rotations. Three internal forces and three internal moments are assumed to act at each point of the centroidal axis of the beam. Finally, the correctness of the method is shown through an application to a special case of a continuous skew-curved beam. © 1980 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01441243 |
en |
dc.identifier.isi |
ISI:A1980KB33200005 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
53 |
en |
dc.identifier.epage |
64 |
en |