dc.contributor.author |
Ioakimidis, NI |
en |
dc.date.accessioned |
2014-03-01T01:05:48Z |
|
dc.date.available |
2014-03-01T01:05:48Z |
|
dc.date.issued |
1980 |
en |
dc.identifier.issn |
0376-9429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/8999 |
|
dc.subject |
Anisotropic Elasticity |
en |
dc.subject |
fredholm integral equation |
en |
dc.subject |
Gaussian Quadrature |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Power Method |
en |
dc.subject |
Singular Integral Equation |
en |
dc.subject |
Stress Intensity Factor |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
FRACTURE MECHANICS |
en |
dc.title |
A new class of approximate formulas for the evaluation of stress intensity factors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00013394 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00013394 |
en |
heal.language |
English |
en |
heal.publicationDate |
1980 |
en |
heal.abstract |
A powerful method for the solution of crack problems in plane or antiplane, isotropic or anisotropic elasticity is to reduce them to singular integral equations and solve these equations numerically (see, e.g., [1,2]). Then the stress intensity factors at the crack tips, which are the quantities of most interest, are directly determined. Several techniques for the numerical solution of singular |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
International Journal of Fracture |
en |
dc.identifier.doi |
10.1007/BF00013394 |
en |
dc.identifier.isi |
ISI:A1980KM90300017 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
R143 |
en |
dc.identifier.epage |
R146 |
en |