dc.contributor.author |
PANAYOTOUNAKOS, DE |
en |
dc.contributor.author |
THEOCARIS, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:49Z |
|
dc.date.available |
2014-03-01T01:05:49Z |
|
dc.date.issued |
1980 |
en |
dc.identifier.issn |
0020-1154 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9020 |
|
dc.subject |
Cross Section |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Elliptic Integral |
en |
dc.subject |
Exact Solution |
en |
dc.subject |
Kinetics |
en |
dc.subject |
Moment of Inertia |
en |
dc.subject |
Nonlinear Analysis |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.title |
NON-LINEAR ANALYSIS OF CANTILEVER RODS DUE TO TERMINAL MOMENTS |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02627748 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02627748 |
en |
heal.language |
English |
en |
heal.publicationDate |
1980 |
en |
heal.abstract |
Summary In this paper an analytical procedure for the nonlinear analysis of a cantilever rod subjected to terminal moments is presented. According to this method the nonlinear equilibrium differential equations of the deformed rod are decoupled, and an exact solution by elliptic integrals is obtained, when: i) the initial rod is a helix with kinetic symmetry so that the principal moments |
en |
heal.publisher |
SPRINGER VERLAG |
en |
heal.journalName |
INGENIEUR ARCHIV |
en |
dc.identifier.doi |
10.1007/BF02627748 |
en |
dc.identifier.isi |
ISI:A1980JN65500001 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
73 |
en |
dc.identifier.epage |
79 |
en |