dc.contributor.author |
Ioakimidis, NI |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:50Z |
|
dc.date.available |
2014-03-01T01:05:50Z |
|
dc.date.issued |
1980 |
en |
dc.identifier.issn |
00063835 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9023 |
|
dc.subject |
Direct Method |
en |
dc.subject |
Integral Equation |
en |
dc.subject |
Linear Equations |
en |
dc.subject |
Numerical Integration |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Singular Integral Equation |
en |
dc.title |
On convergence of two direct methods for solution of Cauchy type singular integral equations of the first kind |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01933588 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01933588 |
en |
heal.publicationDate |
1980 |
en |
heal.abstract |
The methods for direct numerical solution of Cauchy type singular integral equations of the first kind based on Gauss-Chebyshev or Lobatto-Chebyshev numerical integration and the reduction of such an integral equation to a system of linear equations are proved to converge under appropriate conditions. © 1980 BIT Foundations. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
BIT |
en |
dc.identifier.doi |
10.1007/BF01933588 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
83 |
en |
dc.identifier.epage |
87 |
en |