dc.contributor.author |
Acampora, AS |
en |
dc.contributor.author |
Serafim, PE |
en |
dc.date.accessioned |
2014-03-01T01:05:51Z |
|
dc.date.available |
2014-03-01T01:05:51Z |
|
dc.date.issued |
1980 |
en |
dc.identifier.issn |
1050-2947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9032 |
|
dc.subject.classification |
Optics |
en |
dc.subject.classification |
Physics, Atomic, Molecular & Chemical |
en |
dc.title |
Semiclassical theory of gaseous dipolar media with application to the gas laser |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevA.21.1991 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevA.21.1991 |
en |
heal.language |
English |
en |
heal.publicationDate |
1980 |
en |
heal.abstract |
A new semiclassical model of the active medium of a gas laser and a description of its interaction with a classical electromagnetic field are reported. The model is based upon an exact microscopic formulation of the density of the active medium in a suitably defined semiclassical state space. Field-medium interaction mechanisms are studied by coupling the equation describing the dynamics of this density with Maxwell's field equations and the Schrödinger wave equation. Coupled stochastic nonlinear equations are formulated and quasilinear techniques are employed to effect their solutions. Wave-dipole correlations, the dominant nonlinearity, is shown to effect stability, produce the phenomena of hole burning, mode coupling, and frequency conversion, and to provide the mechanism whereby nonresonant pump field energy is converted into resonant laser oscillations. © 1980 The American Physical Society. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
Physical Review A |
en |
dc.identifier.doi |
10.1103/PhysRevA.21.1991 |
en |
dc.identifier.isi |
ISI:A1980JV62200026 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1991 |
en |
dc.identifier.epage |
1999 |
en |