dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:05:53Z |
|
dc.date.available |
2014-03-01T01:05:53Z |
|
dc.date.issued |
1981 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9049 |
|
dc.subject |
Automatic Evaluation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
VIBRATIONS |
en |
dc.title |
A method for the automatic evaluation of the dynamic relaxation parameters |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0045-7825(81)90066-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0045-7825(81)90066-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1981 |
en |
heal.abstract |
Dynamic relaxation, a vector iteration method which belongs to the family of methods under the title of three-term recursive formulae, is described with viscous and kinetic damping. An automatic procedure is developed for the evaluation of the iteration parameters, thus avoiding any trial run or any eigenvalue analysis of the modified stiffness matrix. Starting values for the maximum eigenvalue could be obtained from the Gershgorin bound, and for the minimum eigenvalue any positive number less than the estimated maximum eigenvalue. The method is applied to geometrically and material nonlinear problems, and comparisons are made with an improved conjugate gradient method and a direct stiffness method. © 1981. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/0045-7825(81)90066-9 |
en |
dc.identifier.isi |
ISI:A1981LC67200004 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
35 |
en |
dc.identifier.epage |
48 |
en |